

Road Scene Understanding for Risk Anticipation from Ego-Vehicle Data

Henrique Piñeiro Monteagudo

Supervisors:

Samuele Salti (University of Bologna), Francesco Sambo and Leonardo Taccari (Verizon Connect)

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Research Project Overview

1st Phase

Done

Obtain a **geometric** and **semantic representation** for road scenes environments

Challenges:

- Lack of 3D GT data
- High variability in data

2nd Phase

In Progress

Predict the **future** position **of agents** and ego-vehicle on the scene

Challenges:

- Lack of GT trajectories
- Multimodality of futures

3rd Phase

To Do

Provide insights into imminent dangers based on built understanding

Challenges:

- Real-time operation
- Difficult to calibrate

Self-Supervised Bird's

Eye View

Segmentation

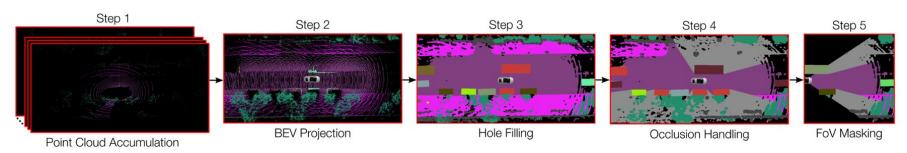
Self-Supervised Forecasting in the Bird's Eye View

Danger anticipation

Bird's Eye View Representation

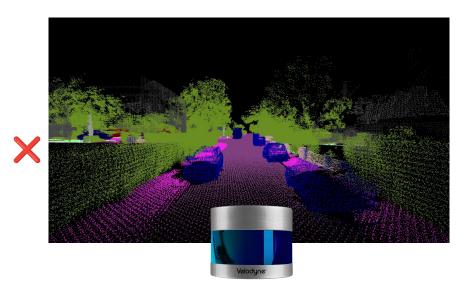
Bird's Eye View: a 2D orthographic projection of the world along the direction of gravity. Representation with desirable properties for road scenes:

- Metric (under certain assumptions)
- Compact compared with explicit 3D like a voxel grid
- Road agents' movement is mostly restricted to the ground plane



Typical pipeline to generate BEV segmentation labels to train fully supervised models. This example: from annotated point clouds in the KITTI360 dataset in *PanopticBEV, Gosala and Valada, Robotics and Automation Letters 2022*

How to supervise without 3D data?



Our proposal: RendBEV

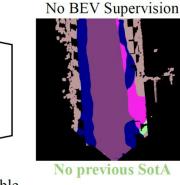
Key ideas:

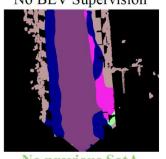
Neural fields to extract 3D scene geometry

Shift supervision to perspective view by sampling from BEV and rendering

future frames

BEV Model

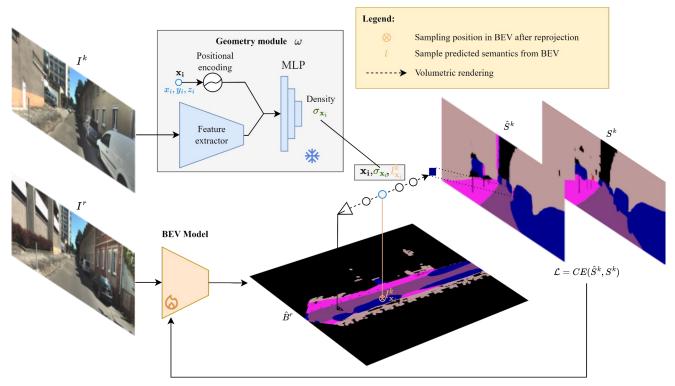




+15.22 mIoU w.r.t. SotA

Self-supervised by differentiable volumetric rendering

The RendBEV method



Piñeiro et al., RendBEV: Semantic Novel View Synthesis for Self-Supervised Bird's Eye View Segmentation, under review

Henrique Piñeiro Monteagudo – SMARTHEP Yearly Meeting, 1st October 2024

RendBEV – Quantitative Results

We beat an unsupervised baseline (IPM)

BEV (%)	Method	Road	Sidewalk	Building	Terrain	Person	2-Wheeler	Car	Truck r	mIoU
0	IPM [15] RendBEV(ours)	58.39 68.34	23.07 33.27	12.55 33.26	32.47 44.60	0.58 1.23	1.44 0.72			

RendBEV – Quantitative Results

We beat an unsupervised baseline (IPM) and provide SotA results when used as pretraining with 1% of the data

BEV (%)	Method	Road	Sidewalk	Building	Terrain	Person	2-Wheeler	Car	Truck	mIoU
0	IPM [15] RendBEV(ours)	58.39 68.34	23.07 33.27	12.55 33.26	32.47 44.60	0.58 1.23	1.44 0.72	11.61 32.37	5.16 3.39	18.16 27.15
1	SkyEye [5] RendBEV(ours)	70.69 74.76	31.13 40.20	32.38 41.07	40.08 46.40	0.00 1.67	0.00 3.94	29.08 35.78	3.95 5.90	25.91 31.22

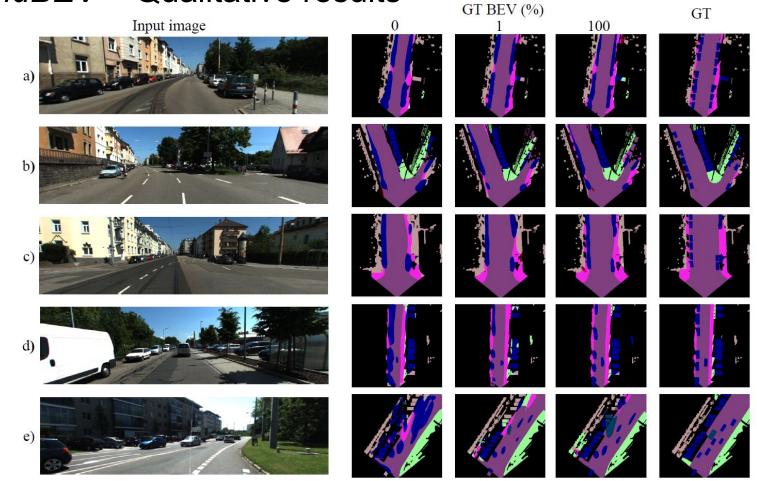
RendBEV – Quantitative Results

We beat an unsupervised baseline (IPM) and provide SotA results when used as pretraining with 1% or 100% of the data

BEV (%)	Method	Road	Sidewalk	Building	Terrain	Person	2-Wheeler	Car	Truck	mIoU
0	IPM [15] RendBEV(ours)	58.39 68.34	23.07 33.27	12.55 33.26	32.47 44.60	0.58 1.23	1.44 0.72	11.61 32.37	5.16 3.39	18.16 27.15
1	SkyEye [5] RendBEV(ours)	70.69 74.76	31.13 40.20	32.38 41.07	40.08 46.40	0.00 1.67	0.00 3.94	29.08 35.78	3.95 5.90	25.91 31.22
100	TIIM [23] VED [14] VPN [17] PON [21] Simple-BEV [7] PoBEV [6] SkyEye [5] RendBEV(ours)	63.08 65.97 69.90 67.98 70.66 70.14 72.82 74.83	28.66 35.41 34.31 31.13 35.50 35.23 38.27 40.98	13.70 37.28 33.65 29.81 34.67 34.68 40.86 41.80	25.94 34.34 40.17 34.28 41.18 40.72 45.86 45.63	0.56 0.13 0.56 2.28 1.04 2.85 3.59 3.47	6.45 0.07 2.26 2.16 2.11 5.63 7.74 6.09	33.31 23.83 27.76 37.99 38.24 39.77 41.37 45.55	8.52 8.89 6.10 8.10 12.42 14.38 9.74 16.74	22.53 25.74 26.84 26.72 29.48 30.42 32.53 34.39

9/15

RendBEV – Qualitative results



Next steps

Expand RendBEV

- Experiment in more datasets and study generalization capabilities
- Architectural tweaks, adapt to different camera intrinsics

Target: journal paper in coming months

Advance towards anticipation

- Predict future position of objects in the Bird's Eye View
- Integrate with our self-supervision framework

Target: conference paper in coming months

Collaborations: viewpoint shift dataset

VisDepth: novel dataset with viewpoint shifts in dashcams and evaluation methodology to quantify impact of different camera positions and orientations on monocular depth estimation performance

Dataset available at: ViewpointDepth

<u>A New Dataset for Monocular Depth Estimation Under Viewpoint Shifts</u>, Pjetri et al., presented at ECCV <u>Vision-Centric Autonomous Driving Workshop</u>

Collaboration: VS-Sim, Synthetic CARLA dataset

- Synthetic dataset generated with the CARLA simulator
- Evaluation of BEV semantic segmentation models against viewpoint shifts
- Work in progress, more soon!

VS-Sim: A Synthetic Dataset for Viewpoint Shift Robustness

Secondment: Anomaly detection with HEP data at UoM

- Hands-on experience with HEP data and software (my first time with ROOT
)
- Anomaly detection chats and literature review
- Testing autoencoder in Baler on data

Caterina and me at UoM

Conclusion

Main takeaways:

- Developed a method capable of performing BEV semantic segmentation with no explicit BEV supervision for the first time
- Collaborated on other projects to produce new datasets for relevant tasks
- Pivoting towards future prediction and danger anticipation

Thank you for your attention!

Rendering (maybe add a NeRF or BtS video or something)

$$\alpha_{i} = \exp(1 - \sigma_{\mathbf{x}_{i}} \delta_{i})$$

$$T_{i} = \prod_{j=1}^{i-1} (1 - \alpha_{j})$$

$$\hat{c} = \sum_{i=1}^{m} T_{i} \alpha_{i} c_{\mathbf{x}_{i}}$$

$$\mathbf{x}_{i}, \mathbf{r}_{\mathbf{x}}, \mathbf{l}_{\mathbf{x}_{i}}^{k}$$