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Overview:
● Heterogenous Tracking
● AD for DQM
● Knowledge is Overrated - 

Fast Inference
● Other Activities
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Qualification Task: 
Heterogenous Track 
Reconstruction
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Track Reconstruction
Clusterization

Spacepoints

Seeding

Track Finding



SMARTHEP is funded by the European Union’s Horizon 2020 research and innovation 
programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086 ESR12: Pratik Jawahar

Problem(s)!

4

• No. of tracks per event for HL-LHC, 

expected to increase 2.5x

• Current R&D: Use GPUs for speedup via 

parallel computation

• However, sequential algorithms like 

CKF do much better on CPUs than 

GPUs!

• Heterogenous track reco? (CPU-GPU)
Computing term for specific purpose 
architectures (eg. GPU, TPU, IPU etc.)
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Heterogenous Track 
Reconstruction:
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• Step 1: Profiling CPU and GPU code to identify run-time speed-up

• Ideally without drop in tracking efficiency

• Step 2: Identify bottlenecks

•  Points where one architecture outperforms the other

• Step 3: Calculate data-transfer latencies at bottlenecks

• Data transfer latencies between host (CPU) and device (GPU) eat up 
speed-up
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CUDA Profiling (MetaInfo ♞)



SMARTHEP is funded by the European Union’s Horizon 2020 research and innovation 
programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086 ESR12: Pratik Jawahar 7

CUDA Profiling - TRACCC 
(mu200)

CPU GPU

Parent process

Duration/
Event 
[mu-sec] Parent process

Duration/
Event 
[mu-sec]

Container 
Instantiation 13

Container 
Instantiation 4

File reading 3,825,015 File reading NA

Clusterization 118,703 Clusterization NA

Spacepoint Formation 22,413
Spacepoint 
Formation NA

Clusterization + 
Spacepoints 141,116

Clusterization + 
Spacepoints 3,832

Seeding 5,715,996 Seeding 16,365

Track param est 32,824 Track param est 365

Data File Detector Geometry
No. of 
Events

tml_full/ttbar_
mu200

tml_detector/trackml-
detector 10

• POC feasibility example:
• Clusterization, Spacepoint 

formation, Seeding are 
significantly faster on Device

• Considering Host-Device and 
Device-Host wall-time 
overheads, 
• there is still a speedup of 

~5800 msec until the 
seeding step of the chain
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TRACCC + ACTS POC 
Example

Host (CPU) Device (CUDA)

Read Inputs Instantiate

Clusterization Spacepoints

SeedingTrack Params

H2D Copy

D2H CopyTrack Finding 
(ACTS::CKF)

Basic Perf 
Check
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POC Track Quality 
• Compare POC tracks with tracks produced by 

ACTS for 
• same detector geometry 
• similar config options

• Plot shows track pT distributions after the track 
finding step before resolving ambiguities for 1 
event

• Distributions checked for 10 example events
• Distributions roughly correspond

• POC example produces comparable tracks before 
ambiguity resolution

• Possible reasons for differences:
• ACTS methods and TRACCC Device methods do not have 

1-1 correspondence
• Measurements, Seeds, Params are slightly different 

between the two
• Minor differences in Config option setups b/w ACTS and 

TRACCC 
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CPU GPU

Parent process
Duration/Event 
[mu-sec]

Duration/Event 
[mu-sec]

Container Instantiation 13 4

File reading 3,825,015 NA

Clusterization + Spacepoints 141,116 3,832

Seeding 5,715,996 16,365

Track param est 32,824 365

ACTS::TrackFinding (CKF) 13,501,182

TRACCC::TrackFinding (CKF) NA

Data File Detector Geometry
No. of 
Events

tml_full/ttbar_
mu200

tml_detector/trackml-
detector 10

Wall Time Values for POC 
(mu200)

• POC example runs via a single 
executable

• Easier to profile

• ACTS::TrackFinding is the most 
compute intensive step as expected

• TRACCC::TrackFinding on Device is 
faster BUT this result is not for the 
same event or detector geometry

• TRACCC::TrackFinding measurement 
comes from a toy example

• Only meant as a ball-park (placeholder) 
comparison until TRACCC has a full chain 
implementation
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• Profiling tools can provide a lot of useful metrics - Tools are consistently improving

• Apples-Apples comparison of performance of this work requires a corresponding 

TRACCC::TrackFinding implementation within the full chain example
• Caveat: ACTS and TRACCC are not 1-1 replicas for Host nor Device implementations 

• Case: 
• TrackFinding on Device is slower: A heterogeneous solution could be considered

• With performance opitmizations

• Better build integration between TRACCC-ACTS as opposed to brute-forcing the build

• TrackFinding on Device is faster: The heterogeneous solution could still provide flexibility downstream in terms of net 

throughput optimization

• Overall, track reconstruction on Device is promising. Heterogeneous operation is a potential 

solution to consider for further development

Conclusions
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Anomaly Detection for 
Data Quality 
Monitoring
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Liquid Argon (LAr) Calorimeter
• Particles passing through the LAr create 

electromagnetic showers, inducing 
ionization in the liquid argon, which is 
collected by electrodes under high voltage

• Structure:
• Divided into four main sections:

• Electromagnetic Barrel (EMB): Covers |η| < 1.5.
• Electromagnetic Endcap Calorimeters (EMEC): 

Covers 1.4 < |η| < 3.2.
• Hadronic Endcap Calorimeter (HEC): Covers 1.5 < 

|η| < 3.2 and uses copper as passive material.
• Forward Calorimeter (FCal): Covers the high 

pseudorapidity region (3.1 < |η| < 4.9), using 
copper and tungsten. Ref

https://arxiv.org/abs/1405.3768
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LAr Data Quality Issues
• High Voltage (HV) Trips:

• Sudden voltage drops, affecting signal collection.
• Data Corruption:

• Desynchronization errors between FEB and 
clocks.

• Noisy Channels:
• Identified during calibration, corrected using 

neighboring cells.
• Noise Bursts:

• Correlated with luminosity, detected using 
LArNoisyRO algorithm.

• Trigger and Coverage Misconfigurations:
• Misconfigurations leading to reduced data 

quality.

Ref

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015
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LAr Data Quality Issues
• High Voltage (HV) Trips:

• Sudden voltage drops, affecting signal collection.

• Data Corruption:
• Desynchronization errors between FEB and clocks.

• Noisy Channels:
• Identified during calibration, corrected using 

neighboring cells.
• Noise Bursts:

• Correlated with luminosity, detected using LArNoisyRO 
algorithm.

• Trigger and Coverage Misconfigurations:
• Misconfigurations leading to reduced data quality.

• However, there could be other unlabelled 
detector effects that affect the LArs

Ref

https://arxiv.org/abs/1405.3768
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Unsupervised AD
• A single algorithm sensitive to all known 

and unknown LAr issues
• Events do not need to be tagged in most 

cases since they are usually discarded if 
any DQM check is not met

• Autoencoder approach:
• Train on “good” events

• LumiBlocks with no known flagged issues
• During inference, detector issues result in high 

reconstruction loss
• MSE between AE input and output

• Current setup uses LSTM networks in the 
encoder and decoder

• Enables time-series feature extraction
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Input Data
• Source of Input Data:

• The data comes from topocluster moments, which are aggregated features of clusters of calorimeter cells.
• The two primary topocluster properties used are:

• Q-factor: Indicates how well the signal pulse shape matches the expected ideal shape.
• Timing (𝜏): Refers to the timing of the signal relative to the event, helping detect out-of-time signals or anomalies.

• For each of these properties, we consider the mean and std. dev as the AE inputs
• Two regions considered for both Barrel and End Cap resp.:

• Barrel C: −1.5 ≤ η ≤ 0
• Barrel A: 0 < η ≤ 1.5
• Endcap C: −3.2 ≤ η < −1.5
• Endcap A: 1.5 < η ≤ 3.2

• As a result each input point to the AE is 16 dimensional considering p-p collisions
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Input Data
• Source of Input Data:

• The two primary topocluster properties 
used are:

• Q-factor: Indicates how well the signal 
pulse shape matches the expected ideal 
shape.

• Timing (𝜏): Refers to the timing of the 
signal relative to the event, helping 
detect out-of-time signals or anomalies.

• For each of these properties, we consider 
the mean and std. dev as the AE inputs

• Two regions considered for both 
Barrel and End Cap resp.:

• Each input point to the AE is 16 
dimensional considering p-p 
collisions
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Problems with LSTMs
• LSTMs are known to suffer from the 

catastrophic forgetting phenomenon
• Evident when network trained on p-p 

collisions is then trained on Heavy Ion data
• Fixed by small tweak in the code 

disconnecting mem gates for both tasks

• Sequence length suitable for LSTM-AE 
is considerably small

• LSTMs are also very memory heavy
• Intermediate contexts need to be stored for 

backprop.
• LSTMs are hard to parallelize

Ref

https://arxiv.org/pdf/1903.06070
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• Motivation: solves catastrophic forgetting
• Specialized memory handling

• Produces richer hidden representations of 
much longer sequences

• More sensitive to harder to find detector issues
• Still memory intensive and 

non-parallelizable
• Train a student network to predict xLSTM loss
• Accuracy gained over the baseline LSTM is traded 

off in the student network for speed
• Current status: xLSTM implementation and 

code testing done
• Repeat tests using same dataset
• Merge events from dataset to form larger input 

sequences and compare LSTM-xLSTM

20

xLSTM

Ref

https://arxiv.org/pdf/2405.04517
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• xLSTM is a better 1-1 comparison to 
attention based models such as 
transformers 

• (potentially what Laura might look at with the 
same dataset)

• Better memory management
• The architecture of XLSTM allows it to allocate 

memory more effectively, improving performance 
on tasks that require long-term sequence 
retention.

• It can selectively forget less useful information 
while preserving key details for future use.

• However xLSTM inference is much more 
compute intensive than LSTM

• KD is essential!

21

xLSTM

Ref

https://arxiv.org/pdf/2405.04517
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Secondment: 
Knowledge is 
Overrated
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Fast Inference (EdgeML ‘24) 
• High demand in HEP and many other 

fields for:
• Fast execution of algorithms

• Low latency
• Low compute
• Low power
• Low memory

• Ideally without losing performance on 
the task

• Something that wasn’t spoken about in 
much detail:
• Fast yet SUSTAINABLE!

• Low power IS fast (FastML ‘23) 
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• Use specialized hardware
• GPUs
• FPGAs

• Requires special model 
management driven by 
hardware specs
• Pruning
• Quantization

• ASICs
• NPUs

• Knowledge Distillation
• A large network is trained on the 

required task
• A much smaller network is trained 

to predict the loss of the larger 
one

• Only the smaller network is 
deployed on the Edge device

24

Fast ML Inference (EdgeML ‘24) 
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What if…
• We could distill a larger network like in KD but regress to:

• An arbitrary metric as opposed to loss of a complicated network (loss 
landscapes can be extremely complex high-dimensional manifolds 
themselves)

• Would enable significantly larger inference-size reduction
• While being:

• Verifiable
• Scalable

• Trade off some more performance for… speeeeeed
• Quantize not just weights but also inputs

• The pareto line still lies at the {accuracy lost - speedup line} 
• But now instead of 

• pushing the line down with resistance from accuracy loss
• We are:

• pushing the line up with resistance from loss in speedup
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• Project Status:
• Built codebase with toy MNIST examples
• Identified ways of calculating net amount of computations required for inference

• Needs improving
• Need to design tests using HEP data and tasks

• “Knowledge is overrated: Fast ML Inference”
• Knowledge: richness of the learned prior

• i.e. how descriptive the algo is
• NNs are designed to give as rich prior approximations as possible

• Over {Rated} : rate of compute
• We don't want a high compute rate

• So we are trading away knowledge for lower compute rates (high speed)
• “DUMBHEP ”

• Trading away knowledge makes the algorithm inherently “dumb”

26

Project Title Proposals
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Other Activities
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• Analysis: SVJ+leptons (potential 
DM signature)
• Jets with MET aligned along jet axis

• Consulting for AD at the Trigger 
for new physics
• VAE based approach inspired by 

AXOL1TL (CMS)
• Pheno project: AD using richer 

bkg representations by 
combining generator tunes

28

Quests
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• EVERSE Project: Software 
sustainability
• WP4 pilot (ACTS)

• Used static analysers (SonarCloud) 
to extract code quality metrics

• Used static analysis to help 
identify code inefficiencies and 
reduce cyclomatic complexity in:
• GAPS: GPU-Amplified Parton Showers
• Project in UniMan theory Dept.

29

Side Quests
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• Taught at the iCSC
• A fundamentals of ML lecture titled “Why do 

Machines Learn”
• Dealt with typical misconceptions at every 

step of a traditional ML pipeline
• Introduced a partially new idea called 

example bias
• Documentation biases people in the way 

they perceive code
• Introduced fundamental theoretical ML 

research via
• Geometric DL
• Categorical DL
• Search for a “Theory of Everything ML”

• Anthology (10/17) + EP (3/7)

30

Side Quests
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Thank you!


