REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

ESR12: Accelerated Anomaly Detection

SMA HER.

Pratik Jawahar

Supervisors: Caterina Doglioni, Jiri Masik, Alex Oh, Maurizio Pierini

Overview:

- Heterogenous Tracking
- AD for DQM
- Knowledge is Overrated -Fast Inference
- Other Activities

Qualification Task: Heterogenous Track Reconstruction

SMARTHER Track Reconstruction

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

- No. of tracks per event for HL-LHC, expected to increase 2.5x
- Current R&D: Use GPUs for speedup via parallel computation
- However, sequential algorithms like CKF do much better on CPUs than **GPUs!**
- Heterogenous track reco? (CPU-GPU)

- Step 1: Profiling CPU and GPU code to identify run-time speed-up
 - Ideally without drop in tracking efficiency
- Step 2: Identify bottlenecks
 - Points where one architecture outperforms the other
- Step 3: Calculate data-transfer latencies at bottlenecks
 - Data transfer latencies between host (CPU) and device (GPU) eat up speed-up

SMA HEP CUDA Profiling (MetaInfo REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY 2

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

CUDA Profiling - TRACCC (mu200)

- POC feasibility example:
 - Clusterization, Spacepoint formation, Seeding are significantly faster on Device
 - Considering Host-Device and Device-Host wall-time overheads,
 - there is still a speedup of ~5800 msec until the seeding step of the chain

		Data File	Detector Ge	ometry	No. Ever	of nts			
		tml_full/ttbar_ t mu200	tml_detecto detector	or/trackml-	10				
CPU		· · · · ·			GPU				
	Pare	nt process	Duration/ Event [mu-sec]			Parent	process	Duration/ Event [mu-sec]	
	Cont Insta	ainer Intiation	13			Contai Instant	ner iation		4
	File r	reading	3,825,015			File rea	ading	NA	
	Clust	terization	118,703			Cluste	ization	NA	
	Spac	epoint Formation	22,413			Spacer Forma	ooint tion	NA	
	Clust Spac	terization + epoints	141,116			Clustei Spacer	ization + points	3,832	2
	Seed	ling	5,715,996			Seedin	g	16,36	5
	Tracl	< param est	32,824			Track p	oaram est	36	5

Wall Time Values for POC (mu200)

- POC example runs via a single executable
 - Easier to profile
- ACTS::TrackFinding is the most compute intensive step as expected
- TRACCC::TrackFinding on Device is faster BUT this result is not for the same event or detector geometry
 - TRACCC::TrackFinding measurement comes from a toy example
 - Only meant as a ball-park (placeholder) comparison until TRACCC has a full chain implementation

	Data File	Detector Geometry	No. of Events		
	tml_full/ttbar_ mu200	tml_detector/trackr detector	ml- 10		
CF	U			GPU	
	Parent proces	ss [Ouration/Event mu-sec]		Duration/Event [mu-sec]
	Container Ins	Container Instantiation		8	4
	File reading	File reading		5	NA
	Clusterization	Clusterization + Spacepoints		5	3,832
	Seeding		5,715,996	5	16,365
	Track param e	Track param est			365
	ACTS::TrackFi	nding (CKF)	13,501,182	2	
	TRACCC::Trac	kFinding (CKF)			NA

- Profiling tools can provide a lot of useful metrics Tools are consistently improving
- Apples-Apples comparison of performance of this work requires a corresponding TRACCC::TrackFinding implementation within the full chain example
 - Caveat: ACTS and TRACCC are not 1-1 replicas for Host nor Device implementations
- Case:
 - TrackFinding on Device is slower: A heterogeneous solution could be considered
 - With performance opitmizations
 - Better build integration between TRACCC-ACTS as opposed to brute-forcing the build
 - TrackFinding on Device is faster: The heterogeneous solution could still provide flexibility downstream in terms of net throughput optimization
- Overall, track reconstruction on Device is promising. Heterogeneous operation is a potential solution to consider for further development

Anomaly Detection for Data Quality Monitoring

SMARHEP Liquid Argon (LAr) Calorimeter

- Particles passing through the LAr create • electromagnetic showers, inducing ionization in the liquid argon, which is collected by electrodes under high voltage
- Structure:

REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

- Divided into four main sections:
 - Electromagnetic Barrel **(EMB)**: Covers $|\eta| < 1.5$.
 - Electromagnetic Endcap Calorimeters (EMEC): Covers $1.4 < |\eta| < 3.2$.
 - Hadronic Endcap Calorimeter (HEC): Covers 1.5 < $|\eta| < 3.2$ and uses copper as passive material.
 - Forward Calorimeter (FCal): Covers the high pseudorapidity region (3.1 < $|\eta|$ < 4.9), using copper and tungsten.

SMA HEP LAR Data Quality Issues

- High Voltage (HV) Trips: •
 - Sudden voltage drops, affecting signal collection. •
- Data Corruption: •
 - Desynchronization errors between FEB and clocks.
- Noisy Channels: •
 - Identified during calibration, corrected using neighboring cells.
- Noise Bursts: •
 - Correlated with luminosity, detected using LArNoisyRO algorithm.
- Trigger and Coverage Misconfigurations: •
 - Misconfigurations leading to reduced data quality.

SMAR HEP LAR Data Quality Issues

- High Voltage (HV) Trips:
 - Sudden voltage drops, affecting signal collection.
- Data Corruption: •
 - Desynchronization errors between FEB and clocks.
- Noisy Channels: •
 - Identified during calibration, corrected using neighboring cells.
- **Noise Bursts:**
 - Correlated with luminosity, detected using LArNoisyRO algorithm.
- Trigger and Coverage Misconfigurations:
 - Misconfigurations leading to reduced data quality.
- However, there could be other unlabelled • detector effects that affect the LArs

The University of Manchester

15

- A single algorithm sensitive to all known and unknown LAr issues
- Events do not need to be tagged in most • cases since they are usually discarded if any DQM check is not met
- Autoencoder approach: •
 - Train on "good" events
 - LumiBlocks with no known flagged issues
 - During inference, detector issues result in high reconstruction loss
 - MSE between AE input and output
- Current setup uses LSTM networks in the • encoder and decoder
 - Enables time-series feature extraction

- Source of Input Data:
 - The data comes from topocluster moments, which are aggregated features of clusters of calorimeter cells.
 - The two primary topocluster properties used are:
 - Q-factor: Indicates how well the signal pulse shape matches the expected ideal shape.
 - Timing (*t*): Refers to the timing of the signal relative to the event, helping detect out-of-time signals or anomalies.
 - For each of these properties, we consider the mean and std. dev as the AE inputs
- Two regions considered for both Barrel and End Cap resp.:
 - Barrel C: $-1.5 \le \eta \le 0$
 - Barrel A: $0 < \eta \le 1.5$
 - Endcap C: $-3.2 \le \eta \le -1.5$
 - Endcap A: $1.5 < \eta \le 3.2$
- As a result each input point to the AE is 16 dimensional considering p-p collisions

- Source of Input Data: •
 - The two primary topocluster properties used are:
 - Q-factor: Indicates how well the signal pulse shape matches the expected ideal shape.
 - Timing (τ) : Refers to the timing of the signal relative to the event, helping detect out-of-time signals or anomalies.
 - For each of these properties, we consider the mean and std. dev as the AE inputs
- Two regions considered for both • Barrel and End Cap resp.:
- Each input point to the AE is 16 • dimensional considering p-p collisions

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

SMARTHER Problems with LSTMs

- LSTMs are known to suffer from the catastrophic forgetting phenomenon
 - Evident when network trained on p-p collisions is then trained on Heavy Ion data
 - Fixed by small tweak in the code disconnecting mem gates for both tasks
- Sequence length suitable for LSTM-AE • is considerably small
- LSTMs are also very memory heavy •
 - Intermediate contexts need to be stored for backprop.
- LSTMs are hard to parallelize •

Ref

- Motivation: solves catastrophic forgetting
 - Specialized memory handling
- Produces richer hidden representations of much longer sequences
 - More sensitive to harder to find detector issues
- Still memory intensive and non-parallelizable
 - Train a student network to predict xLSTM loss
 - Accuracy gained over the baseline LSTM is traded off in the student network for speed
- Current status: xLSTM implementation and code testing done
 - Repeat tests using same dataset
 - Merge events from dataset to form larger input sequences and compare LSTM-xLSTM

Ref

- xLSTM is a better 1-1 comparison to attention based models such as transformers
 - (potentially what Laura might look at with the same dataset)
- Better memory management
 - The architecture of XLSTM allows it to allocate memory more effectively, improving performance on tasks that require long-term sequence retention.
 - It can selectively forget less useful information while preserving key details for future use.
- However xLSTM inference is much more compute intensive than LSTM
 - KD is essential!

Ref

Secondment: Knowledge is Overrated

SMAR HER Fast Inference (EdgeML '24)

- High demand in HEP and many other fields for:
 - Fast execution of algorithms
 - Low latency
 - Low compute
 - Low power
 - Low memory
- Ideally without losing performance on • the task
- Something that wasn't spoken about in much detail:
 - Fast yet SUSTAINABLE!
 - Low power IS fast (FastML '23)

SMARTHER FOR FOR FAST ML Inference (EdgeML '24)

- Use specialized hardware
 - GPUs
 - FPGAs
 - Requires special model management driven by hardware specs
 - Pruning
 - Quantization
 - ASICs
 - NPUs
- **Knowledge Distillation** •
 - A large network is trained on the required task
 - A much smaller network is trained to predict the loss of the larger one
 - Only the smaller network is deployed on the Edge device

Fast Machine Learning Imperial College London for Science

Real-time and accelerated ML for fundamental sciences

25-28 September 2023

- We could distill a larger network like in KD but regress to:
 - An arbitrary metric as opposed to loss of a complicated network (loss landscapes can be extremely complex high-dimensional manifolds themselves)
 - Would enable significantly larger inference-size reduction
 - While being:
 - Verifiable
 - Scalable
- Trade off some more performance for... speeeeed
 - Quantize not just weights but also inputs
- The pareto line still lies at the {accuracy lost speedup line}
 - But now instead of
 - pushing the line down with resistance from accuracy loss
 - We are:
 - pushing the line up with resistance from loss in speedup

SMA HEP Project Title Proposals REAL-TIME ANALYSIS FOR SCIENCE AND INDUSTRY

- **Project Status:**
 - Built codebase with toy MNIST examples
 - Identified ways of calculating net amount of computations required for inference
 - Needs improving
 - Need to design tests using HEP data and tasks
- "Knowledge is overrated: Fast ML Inference"
 - Knowledge: richness of the learned prior
 - i.e. how descriptive the algo is
 - NNs are designed to give as rich prior approximations as possible
 - Over {Rated} : rate of compute
 - We don't want a high compute rate
 - So we are trading away knowledge for lower compute rates (high speed)
- "DUMBHEP"
 - Trading away knowledge makes the algorithm inherently "dumb"

Other Activities

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

The University of Manchester

MANCHESTER

1824

- Analysis: SVJ+leptons (potential DM signature)
 - Jets with MET aligned along jet axis
- Consulting for AD at the Trigger for new physics
 - VAE based approach inspired by AXOL1TL (CMS)
- Pheno project: AD using richer bkg representations by combining generator tunes

- EVERSE Project: Software sustainability
 - WP4 pilot (ACTS)
 - Used static analysers (SonarCloud) to extract code quality metrics
- Used static analysis to help identify code inefficiencies and reduce cyclomatic complexity in:
 - GAPS: GPU-Amplified Parton Showers
 - Project in UniMan theory Dept.

- Taught at the iCSC
 - A fundamentals of ML lecture titled "Why do Machines Learn"
 - Dealt with typical misconceptions at every step of a traditional ML pipeline
 - Introduced a partially new idea called example bias
 - Documentation biases people in the way they perceive code
 - Introduced fundamental theoretical ML research via
 - Geometric DL
 - Categorical DL
 - Search for a "Theory of Everything ML"
- Anthology (10/17) + EP (3/7)

The Example Bias SMARTHEP Examples provided in pd.DataFrame({'A': [1. documentation are almost >>> import numpy as np never inclusive of all capabilities >>> a = np.arange(15).reshape(3, 5) • But they are easy to {cmd+c; import h5py f = h5py.File('mytestfile.hdf5', 'r') cmd+v} The problem: import torch.nn as nn import torch.nn.functional as H Its easy to copy examples as is from class Model(nn.Module): research papers def __init__(self): Researchers building on top of such super(). init_() self.conv1 = nn.Conv2d(1, 20, 5) a paper, propagate the example to self.conv2 = nn.Conv2d(20, 20, 5) the point where the example def forward(self, x): x = F.relu(self.conv1(x)) becomes convention return F.relu(self.conv2(x)) RTHEP is funded by the European Union's Horizon 2020 research and inn call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086 HEY, LOOK, WE HAVE A BUNCH OF categories! I'M GONNA organise them. NO, YOU FOOL! THAT WILL ONLY CREATE MORE categories!

Deep learning today: a zoo of architectures, few unifying principles. Animal images: ShutterStock

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

Thank you!

SMARTHEP is funded by the European Union's Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

