

New developments and applications of a Deep-learning-based Full Event Interpretation (DFEI) in proton-proton collisions

Marta Calvi¹, <u>Simone Capelli</u>¹, Jonas Eschle², Julian Garcia Pardinas³, Abhijit Mathad³, Andrea Mauri⁴, Nicola Serra⁵, Rafael Silva Coutinho², Felipe Luan Souza De Almeida², William Sutcliffe⁵, Azusa Uzuki⁵

University of Milano-Bicocca & INFN¹, Syracuse University², CERN³, Imperial College⁴, University of Zurich⁵

10/01/2024

SMARTHEP – Milano-Bicocca

Motivation

- R&D project with two main applications:
 Trigger and offline analysis
- It could be used at LHCb, a single-arm forward spectrometer, designed to studying the <u>decays</u> <u>of beauty and charm hadrons</u>, rare decays and CPV measurements
- Very broad physics program, to be maintained and expanded in future LHC runs
- ➢ Increased particle multiplicities for LHCb Upgrades I and II bring big challenges

Paradigm shift

Signal-based vs Full Event Interpretation

Signal based

The current LHCb trigger is an OR between many decay-mode selection lines

Since Run2, to reduce the event size, some lines store only parts of the event that are related to the specific signal [JINST 14 (2019) 04, P04006]

E.g.: store the signal + the tracks in the same primary vertex (PV)

Reconstruct the b- and c- hadron decay chains in the event, in a hierarchical-clustering manner (cluster \rightarrow unstable particle) and discard the rest Advantages:

FEI

- Exploit extra correlations between objects in the event
- Bandwidth oriented: focus on storing as much "useful" information as possible
- Case of several signals per event as an integral part of the approach
- Establishment of a basis for an expanded functionality of the trigger: inclusive selections, study of anomalous events, ...

Deep-learning based Full Event Interpretation (DFEI)

- Input features: charged particles and their measured properties (nodes) and their relations (edges)
- Hierarchical, automatized and inclusive reconstruction of heavy-hadron decay chains
- Trigger: Safely discard rest of event, with minimal loss for analyses → powerful event size reduction tool in a multi-signal environment
- 2) Analysis tool for background classification & suppression and for inclusive studies

[Comput.Softw.Big Sci. 7 (2023) 1, 12]

The Cooking Recipe

Blue: reconstructed ancestors Green: particles from a b-hadron Red: particles from the rest of the event

Goal: Remove most of the nodes not produced in a b-hadron decay

Signal nodes: particles from a b-hadron (any of them)

Background nodes: particles from the rest of the event

Cut @ 99% $\sim\!\!70\%$ BKG rejection

Blue: reconstructed ancestors Green: particles from a b-hadron Red: particles from the rest of the event

Goal: Remove connections between nodes not produced in the same b-hadron decay

Signal nodes: pairs of particles with the same b-hadron ancestor Background nodes: any other pair of particles

Cut @ 99% $\sim\!\!68\%$ BKG rejection

Blue: reconstructed ancestors Green: particles from a b-hadron Red: particles from the rest of the event

Blue: reconstructed ancestors Green: particles from a b-hadron Red: particles from the rest of the event

For the prototype, use as target a **simplified version of the decay chain, based on the reconstructible vertices**.

- Very-short-lived resonances merged with the previous ancestor.
- Resonances with less than two charged descendants merged with the previous ancestor.

Trigger performance: event-size reduction

Algorithm based on Graph Neural Networks, for the moment restricted to b-hadrons and charged stable particles

Trained on custom simplified simulation in Run3-like conditions, with ~ 140 particles per event [https://zenodo.org/records/7799170]

Data filtering: decay-chain reconstruction

Decay mode	Perfect $(\%)$	Wrong hierarchy $(\%)$	Not iso. $(\%)$	Part. reco. $(\%)$
Inclusive H_b decay	4.6 ± 0.1	5.9 ± 0.1	76.0 ± 0.2	13.4 ± 0.1
$\overline{B^0 \to K_0^*[K\pi]\mu^+\mu^-}$	35.8 ± 0.7	19.2 ± 0.6	44.9 ± 0.7	< 0.02
$B^0 \to K^+ \pi^-$	38.0 ± 0.7	_	54.7 ± 0.7	7.2 ± 0.4
$B_s^0 \to D_s^- [K^- K^+ \pi^-] \pi^+$	32.8 ± 0.7	7.1 ± 0.4	53.7 ± 0.8	6.4 ± 0.4
$B^{0} \to D^{-}[K^{+}\pi^{-}\pi^{-}]D^{+}[K^{-}\pi^{+}\pi^{+}]$	22.7 ± 0.6	22.4 ± 0.6	54.9 ± 0.8	< 0.02
$B^+ \to K^+ K^- \pi^+$	35.7 ± 0.7	10.2 ± 0.4	46.4 ± 0.7	7.7 ± 0.4
$\Lambda_h^0 \to \Lambda_c^+ [pK^-\pi^+] \pi^-$	21.7 ± 1.0	8.9 ± 0.7	36.8 ± 1.2	32.6 ± 1.1
$B_s^{0} \rightarrow J / \tilde{\psi}[\mu^+ \mu^-] \phi[K^+ K^-]$	26.9 ± 0.6	20.5 ± 0.5	52.5 ± 0.6	< 0.02

10/01/2024

Standard vs DFEI-based analysis

10/01/2024

- LHCb has found ~50 new exotic states: could benefit from **more inclusive searches**, and DFEI could do that
- Current ideas for searching for exotic states include **simultaneous analysis** of multiple exclusive decay chains

E.g.: the search for the tetraquark T_{bc} could involve the simultaneous mass fit of 20 to 40 channels!

 $V_{1} = 5.3 \pm 5.1$

decay channel	$\varepsilon_{tot} \times \mathcal{B} \left[10^{-9} \right]$	Expected yield					
fully re	fully reconstructed channels						
$D^0 D^0$	7.8	3.1					
$D^0 D^+ \pi^-$	9.2	3.7					
$D^0 D^0 \pi^+ \pi^-$	3.4	1.4					
$D^{+}D^{+}\pi^{-}\pi^{-}$	3.5	1.4					
sum		10					
$J/\psi D^+K^-$	2.3	0.9					
$J\!/\psi D^0 K^- \pi^+$	3.1	1.2					
sum		2.1					
$\overline{B}{}^{0}K^{-}\pi^{+}$	32.9	13.2					
$B^-K^-\pi^+\pi^+$	33.6	13.4					
$\overline{B}{}^0K^-\pi^+\pi^+\pi^-$	6.7	2.7					
sum		29					
$\overline{B^0}_{SL}K^-\pi^+$	188	75					
$B^-{}_{SL}K^-\pi^+\pi^+$	94	38					
$\overline{B}{}^0{}_{SL}K^-\pi^+\pi^+\pi^-$	61	24					
sum		137					
$D^0 D^+ \mu^- \nu$	56	22					
$D^0 D^0 \pi^+ \mu^- \nu$	43	17					
$D^0 D^+ \mu^- + X$	163	65					
$D^0 D^0 \mu^- + X$	108	43					
sum		147					
$\overline{B}{}^{0}K^{-}\mu^{+} u$	24	9.5					
$B^-K^-\pi^+\mu^+\nu$	16	6.5					
sum		16					
$D^0 K^- \pi^+$	68	27					
D^+K^-	134	54					
$D^0\pi^+\pi^-$	2.5	1					
$D^+\pi^-$	4.9	2					
sum		84					

<u>Search for Tbc – prospects for Run3, I. Polyakov,</u> Hunting for the charming beauty tetraquark Tbc: LHCb meets theory, 5 October 2023, CERN

- DFEI can simultaneously reconstruct the different decay chains, allowing for a more inclusive search for exotic states
- \succ Simplified Pythia-based simulation sample of several weakly decaying modes of T_{bc} analysed simultaneously using DFEI

- DFEI can simultaneously reconstruct the different decay chains, allowing for a more inclusive search for exotic states
- \succ Simplified Pythia-based simulation sample of several weakly decaying modes of T_{bc} analysed simultaneously using DFEI

Outline (III)

First speed-up round and C++ inference pipeline

First speed-up round and C++ inference pipeline

▶ Next: physics performance studies for the new configuration, hyper-parameter tuning

 \succ In parallel: study of GNN architecture developments to gain further speed-ups

Outline (IV)

Summary

- 1) Developed a prototype, published in paper [Comput.Softw.Big Sci. 7 (2023) 1, 12]
- 2) We are exploring **applications** in **three** different domains:
 - > Trigger, data filter and inclusive analysis with very promising results [https://zenodo.org/records/7799170]
- 3) On the way from prototype **towards production**
 - > Developed a C++ pipeline and improved the scaling and timing of the algorithm

• Stay tuned: further developments are on the way!

Thank you!

Backup

10/01/2024

Facing the new era with machine learning

Similar developments in other experiments

Full Event Interpretation algorithm at an e+e- collider [Comput.Softw.Big Sci. 3 (2019) 1 6], BELLE2-MTHESIS-2020-006].

GNNs for trigger purposes [see e.g. Eur.Phys.J.C 81 (2021) 5, 381, Frontiers in Big Data 3 (2021) 44].

Decays and graph structures

Event

Global: event information *nTracks, ...*

Nodes: track variables *momentum, (PID), ...*

Edges (**#** nodes²!): track *relations* angle, DOCA, ...

Graph structures

Representation of objects with relations

Arbitrary, sparse/dense relations

5

Cut-based edge pruning

Simone Capelli – SMARTHEP MiB - New developments and improvements for DFEI

C++ inference pipeline

Information of the charged stable particles in an event.

NP algorithm:

1. Pre-processing: read information on particle-level quantities in the event, compute derived quantities.

2. Inference: evaluate the NP CatBoost BDT model, using the CatBoost C API.

3. Post-processing: apply the node filter.

EP algorithm:

4. Pre-processing: compute particle-pair-level quantities.

5. Inference: evaluate the EP CatBoost BDT model, using the CatBoost C API.

6. Post-processing: apply the edge filter.

LCAI algorithm:

7. Pre-processing: construct the input graph, combining particle-level, particle-pair-level and global information in the event.

8. Inference: evaluate the LCAI GNN model, using <u>TMVA::SOFIE</u>.

Prediction of the hierarchical relations for all pairs of particles.

Example case: $B^0 \to K^+ \pi^- \ell^+ \ell^-$

- Partially- and over-reconstructed backgrounds are challenging to disentangle from the signal in exclusive, conventional analysis \rightarrow loose of sensitivity
 - Particularly important for electron modes, impacting R_X measurements
- With DFEI, these contributions are fully reconstructed and classified in clusters of different numbers of particles

10/01/2024

Performance: final-state particle filtering

3rd module: Lowest Common Ancestor (LCA)

inference

Decay-level performance

Decay mode	Perfect $(\%)$	Wrong hierarchy (%)	Not iso. $(\%)$	Part. reco. $(\%)$
Inclusive H_b decay	4.6 ± 0.1	5.9 ± 0.1	76.0 ± 0.2	13.4 ± 0.1
$ \frac{B^{0} \to K_{0}^{*}[K\pi]\mu^{+}\mu^{-}}{B^{0} \to K^{+}\pi^{-}} \\ B_{s}^{0} \to D_{s}^{-}[K^{-}K^{+}\pi^{-}]\pi^{+} \\ B^{0} \to D^{-}[K^{+}\pi^{-}\pi^{-}]D^{+}[K^{-}\pi^{+}\pi^{+}] \\ B^{+} \to K^{+}K^{-}\pi^{+} \\ \Lambda_{b}^{0} \to \Lambda_{c}^{+}[pK^{-}\pi^{+}]\pi^{-} \\ B_{s}^{0} \to J/\psi[\mu^{+}\mu^{-}]\phi[K^{+}K^{-}] $	$\begin{array}{c} 35.8 \pm 0.7 \\ 38.0 \pm 0.7 \\ 32.8 \pm 0.7 \\ 22.7 \pm 0.6 \\ 35.7 \pm 0.7 \\ 21.7 \pm 1.0 \\ 26.9 \pm 0.6 \end{array}$	$\begin{array}{c} 19.2 \pm 0.6 \\ - \\ 7.1 \pm 0.4 \\ 22.4 \pm 0.6 \\ 10.2 \pm 0.4 \\ 8.9 \pm 0.7 \\ 20.5 \pm 0.5 \end{array}$	$\begin{array}{c} 44.9 \pm 0.7 \\ 54.7 \pm 0.7 \\ 53.7 \pm 0.8 \\ 54.9 \pm 0.8 \\ 46.4 \pm 0.7 \\ 36.8 \pm 1.2 \\ 52.5 \pm 0.6 \end{array}$	< 0.02 7.2 ± 0.4 6.4 ± 0.4 < 0.02 7.7 ± 0.4 32.6 ± 1.1 < 0.02

Different types of decay reconstruction

- wrong hierarchy: correct tracks but wrong hierarchy
- Not isolated: additional tracks that do not belong to the decay

- missing tracks of the true decay

Fraction of perfect signal reconstruction approximates the tag side efficiency for FEI at Belle (II) (order a few percent for semileptonic decays and a few per mille for hadronic decays.)

- Several states observed (50 since 2003)
- But: we still don't understand their nature
 - Bound or molecular states?
- Need unambiguous experimental evidence
- Other doubly-heavy states $[QQ\overline{ud}]$:
 - $T_{bb} \ [bb][\overline{ud}] \rightarrow \sim 10^{-3}$ events in Run3&4
 - $T_{bc} [bc][\overline{ud}] \rightarrow$ may be below $\overline{B}D$ threshold, but opposite expectations in some molecular models

Karliner, Rosner, 2017, Semay, Sllvestre-Brac, 1994, Carames, Vijande, Valcarce, 2019, Meng et al., 2021 Li, Sun, Liu, Zhu, 2012, Liu et al., 2019, Hudspith et al., 2020

Search for Tbc – prospects for Run3, I. Polyakov,

Hunting for the charming beauty tetraquark Tbc: LHCb meets theory, 5 October 2023, CERN

Blue: reconstructed ancestors Green: particles from a b-hadron Red: particles from the rest of the event

Blue: reconstructed ancestors Green: particles from a b-hadron Red: particles from the rest of the event

Blue: reconstructed ancestors Green: particles from a b-hadron Red: particles from the rest of the event

3rd module: Lowest Common Ancestor (LCA) inference

For the prototype, use as target a **simplified version of the decay chain, based on the reconstructible vertices**.

- Very-short-lived resonances merged with the previous ancestor.
- Resonances with less than two charged descendants merged with the previous ancestor.

Physics performance: decay-chain reconstruction

10/01/2024