LHC & SPS NANOSECOND TIME RESOLUTION BLM SYSTEM CONSOLIDATION STRATEGIES

E. Calvo (CERN, SY-BI-BL)

Current status Consolidation objectives

Discussion about possible strategies

Summary

2/26

CURRENT STATUS

Machine	#detectors	Readout	Photo
LHC	11	FMC-1000 650MSPS 14-bits 2-ch digitiser on VME VFC card	1
TI2 & TI8	2	FMC-1000 650MSPS 14-bits 2-ch digitiser on VME VFC card	1
SPS	4	FMC-1000 650MSPS 14-bits 2-ch digitiser on VME VFC card	1,3
TT20	1	FMC-1000 650MSPS 14-bits 2-ch digitiser on VME VFC card	3
PS	17	Oasis (PCI Digitiser U1071A/DP1400-002, 8-bit 2-ch)	2
PSB	8	Oasis (PCI Digitiser U1071A/DP1400-002, 8-bit 2-ch)	2
F61	1	Picoscope (8-12 bits, 4-ch, 1GHz BW, 5GS/s)	3
In development ^[1]		IAM FMC 500MSPS 4-ch 14-bits digitiser on VME VFC card	4

44 detectors, 4 readout types

Notes : ^[1] 500MSPS 4-ch proposed replacement for PSB detectors

3

4/26

(CERN)

5/26

PS and PSB systems

Consolidation objectives

BI Technical Boa	rd 4 th July 24 E. Calvo (BI-BL)	
	\Rightarrow Redesign of the front-end to allow the injection of a calibration signal	[1] Already reported on TB 9/02/2023
Priority #3	7) Remote calibration or testing	
	towards a concentrator	
Priority #2	\rightarrow Possible strategies: Move away of VME for DDP readout, for example using U	IDP on ontical links
Moderate	6) Increase VMF readout BW	
F11011Ly #2	\Rightarrow Possible strategies: remote control of variable gains, additional channels, etc	C
Moderate	5) Get some dynamic range adaptability to different beam scenario	S
	\Rightarrow Possible strategies: Consider optical transmission between Front-End and Ba	ck-End
Priority #2	Solve noise and coupled interferences in some locations	
Madaveta	\Rightarrow Resources to rewrite the FW and produce set of TB	
Priority #1	3) Refactoring the firmware (hidden bugs and non-synchronicities)	+ VVR
Critical	\Rightarrow Need of new/additional digitizers	
	FIVIC card, 1 in the TB, 0 spares (
Critical Priority #1	2) Solve lack of spares for maintenance, new installations or testing	(16 operational
	\rightarrow Plan to use of FiviC-2ch fivinoutle (production on-going, thus out of the sec	
Priority #1	T) Old power supplies can not be monitored or controlled remotely \Rightarrow Plan to use of EMC 3cb HV module (production on going, thus out of the sec	one of current discussion)
Critical	1) Old newer supplies can not be menitored or controlled remotely	

POSSIBLE STRATEGIES

1) Purchase additional FMC-1000 digitisers

2) Buy/build new FMC digitiser based on same/similar ADC

3) Use Timepix4 BLM

4) Use BCMF23 CMS readouts ASIC (& LpGbt & VTRx+)

9/26

5) Replace readout platform based on VFC+FMC by a RFSoC SoM

1.- Purchase additional FMC-1000 digitisers

- \Rightarrow Smallest research investment, thus smallest risk
- \Rightarrow Benefits: Tackles
 - the spare issue (L1)
 - (readout BW limitation (L2), FW issues (L1))
- \Rightarrow Estimated consolidation cost with this strategy:

HW	MOQ = 10pc & ~12kCHF/pc	~120 kCHF
Persons/year	1 Quest for refactoring the FW: 105kCHF/y * 2y	~210 kCHF

- \Rightarrow Time planning: ~1y
- \Rightarrow Other criteria:
 - Technical perspective:
 - Does not tackle front-end issues: Saturation and dynamic range adaptability, noise immunity, remote calibration or testing
 - Strategically:
 - Will continue with VFC platform, so same than other BI-BL systems ⇒ reduces know-how risk at the section/group level, lower R&D and maintenance effort, etc

2.- Build/Buy new FMC digitisers

- \Rightarrow Similar strategy to previous. Tackles the same priorities.
- \Rightarrow Alternative plan if we are not allowed to buy additional FMC-1000 cards
- ⇒ We could make a new design based on same ADC to prevent vendor lock-in and minimize FW re-design, even if still quite some refactoring is necessary.
- \Rightarrow Estimated cost with this strategy:

HW	Option A) Build	 FMC Digitiser (components + PCB) : ~2 kCHF/pc ^[1] if only LHC & SPS + spares: ~20pc ⇒ 40 kCHF if also PS & PSB + spares : ~50pc ^[2] ⇒ 100 kCHF + design cost (~10kCHF) 	~110 kCHF
	Option B) Buy	 COTS FMC Digitiser : ~8-10 kCHF/pc if only LHC & SPS + spares: 20pc ⇒ 160k - 200k CHF if we migrate PS & PSB : 50pc ⇒ 400k - 500k CHF 	~200k - 500k CHF
Person/year		1 Quest for FW development: 105 kCHF/y * 2y	210 kCHF

\Rightarrow Time: ~2y or more

Notes:

^[1] Very rough estimation: 500 CHF/ADC + 800 CHF (PCB) + other components and margin ^[2] Assuming 2ch / digitizer card

2.- Build/Buy new FMC digitisers

- \Rightarrow Other criteria:
 - Technical perspective:
 - It does not tackle issues related to the detector side : noise or interferences on the cables, dynamic range adaptability, remote testing, etc.
 - No change on the data type provided to the users
 - Strategically:
 - IMHO, better to build than to buy to prevent the vendor lock-in and foster the know-how within the group instead of losing it in favour of providers
 - High speed complex PCB, but there are schematics and layouts available (<u>EVAL-FMCDAQ3-</u> <u>EBZ</u>), and other groups may eventually be interested.
 - This path will continue using the VFC platform, so same platform than other BI-BL systems (minimizes know-how risk and effort at the section/group level).

3.- Use Timepix4 BLM development

 \Rightarrow This strategy tackles:

All!

the spare issue (L1), FW issues (L1), BW readout (L2), noise immunity (L2)

- remote calibration (L2), and potentially dynamic range adaptability (L2)
- \Rightarrow Estimated cost with this strategy:

HW	Detectors: ~2k CHF/pc * 20 pc ^[2] detectors (if only LHC+SPS) ⇒ 40kCHF Back-End + FEC : ~7k CHF/pc * 10pc ^[3] ⇒ ~70kCHF + Pulling of fibres (not accounted here)	~110 kCHF
Person/year	1 Origin (for dBLM vs Timepix BLM comparison): 85kCHF/y * 1y ^[1] 1 Quest for FW development: 105kCHF/y * 2y	~300 kCHF

\Rightarrow Time : ~2y or more

^[1] Already requested at beginning of 2024
 ^[2] 6@LHC-P7+2@LHC-P2+2@LHC-P8+3LHC-P6+2@SPS ~ 15pc +spares
 ^[3] 3@SPS+3@LHC(P2,P6,P8)+2@LHC(P7) ~ 7 pc+3 spares

TPX3-BLM prototype

Design architectures for TPX4-BLM: a) Standard version (up to ~58 Mevents/s) b) Fast version (up to ~155 MEvents/s)

3.- Use Timepix4 BLM development (cont.)

- \Rightarrow Long term agreement between XEI and BL to develop a fast-deploying fast BLM system. Specs EDMS <u>2802519</u>
- ⇒ FW will need to be re-written to provide typical fast BLM data (bunch loss integrals, turn loss integrals, time of arrival histogram, capture) from ToT and ToA.
- ⇒ Some uncertainties at the detector level need to be studied: Can we cover the required dynamic range at the different dBLM locations and scenarios ? ⇒ Test at Charm foreseen in 2024
- \Rightarrow Seems a good solution for slow extraction locations
- \Rightarrow Other criteria
 - Strategically:
 - Complete change of paradigm w.r.t. what is being done now within BI-BL ⇒ different sensor, different platform (SoC), different measurement principle (discriminator after analogue integration in quantified space instead of direct digitalization and digital integration).
 - Higher level of testing and adjustments features at the cost of a relatively higher complexity.
 - Pixel equalization, space quantification will be used only for the dynamic range adaptability, calibration w.r.t. number of pixels enabled

Timepix4 BLM additional information

Size : 24.7 x 30.0 mm² (6.94 cm² sensitive area > 1 cm² pCVD diamond) \Rightarrow Larger signal expected Number of pixels : 448 x 512 pixels \Rightarrow Which can be individually enabled and calibrated When a pixel has a hit above a pre-defined and programmable threshold, it sends Time of Arrival (ToA with time resolutions <200ps), Time over Threshold (ToT with a resolution of 1.56ns) + hit coordinates

BI Technical Board, 4th July 24

3.- Use BCMF23 CMS readouts ASICs

- ⇒ New ASIC developed for the phase-2 upgrade of the CMS Fast Beam Condition Monitoring (BRIL project).
 - During Run2, previous ASIC version, BCM1F was used as a luminometer with sub-bunch crossing precision. Connected detectors were a mixture of sCVD, pCVD and Silicon sensors.
 - Upgraded during LS2. Now use only AC coupled cooled silicon diodes
 - Future upgrade for HL-LHC plans to use the new version: BCMF23 ASIC.
 - It consists of an integrator pre-amplifier and a discriminator. The ASIC produces an analogue pulse, where the rising edge defines de ToA, and the duration defines the ToT (∝ Q ∝ Ex/dx).
 - This signal is routed towards an LpGBT which continuously samples it (32 Samples/bunch, 0.78ns time resolution) and transmits it to the back-end over an optical link via VTRx+.
 - ASIC was designed to withstand 2 MGy and 2x10¹⁵ 1Mev eq. n/cm², ENC <900 e⁻.
 - Pre-amplifier characterised by fast rise time, narrow pulses, and fast return to baseline after multiple MIPs.
 - Adjustable feedback resistor (25 or 50 kOhm), 69 dB open loop gain
 - Prototype received by Q3-2023, and it is being qualified. Report will be soon available.

FBCM23 block diagram

FBCM23 schematic

3.- Use BCMF23 CMS readouts ASICs (cont.)

- \Rightarrow This strategy would tackle:
 - the spare issue (L1), FW issues (L1), BW readout (L2), noise immunity (L2)
 - remote calibration (L2), dynamic range adaptability (L2)
- \Rightarrow Cost:

HW	Unknown for the moment. Mask + 100 chips ~33 kCHF	50 kCHF - 100 kCHF ?
Person/year	1 Quest for FW development: 105kCHF/y * 2y 1 Quest/staff for HW development	>> 210 kCHF

- \Rightarrow Time: 2y or more
- \Rightarrow Strategically:
 - The front-end card will have many similarities to the current BLM ASIC card used to readout ICs (ASIC + LpGBT + VTRx). The backend could also stay on the VFC platform. No FMC digitiser needed.
 - It will require new PCB development, and characterisation of ASIC for its use as BLM
 - Similar incertitude than for TPX4-BLM: dynamic range and saturation at dBLM locations ?
 - Complex integration into the PCB since the ASIC requires bonding
 - It will require development of FW to get from the ToT & ToA data, the bunch loss integrals, turn loss integrals, ToA histogram and capture.

4.- Replace readout platform to RFSoC

- \Rightarrow This strategy would tackle:
 - the spare issue (L1), FW issues (L1), readout BW (L2)
 - Might deal with dynamic range adaptability if RFSoC version selected has attenuators.

 \Rightarrow Cost:

HW	Estimated to be comparable to FMC-1000 + Design and production of Anal. front-end card ~10pc (for LHC & SPS)	< 150 kCHF ?
Persons/year	1 Quest for FW develoment: 105 kCHF/y * 2y 1 Quest/staff for HW development	>210 kCHF

Region	# Detectors	# channels	Region	# Detectors	# channels
LHC P7	6	12	SPS BA2	2	2
LHC P2	2	3	SPS BA4	1	2
LHC P8	2	3	SPS BA6	1	2
LHC P6	3	3	SPS BA1	1	2

Due to the detector distribution:

- Current system (FMC-1000): 16 digitiser cards and no growth capacity
- RFSoC based system : (Assuming 8x ADC/SoM) : 9 digitiser cards and growth capacity

4.- Replace readout platform to RFSoC (cont.)

- ⇒ Profit of developments from other instruments (HL-LHC BPMs, Head-Tail, etc.) and reuse as much as possible
 - Same SoM (with RFSoC) solution than the HL-LHC BPMs
 - Required dBLM BW^[1] << HL-LHC BPM BW ⇒ But this improves the Noise Spectral Density</p>
 - IMHO, interesting solution only if a SoM BI standard platform is developed (similar to what was done with VFC-HD)
- ⇒ It could potentially become a common BI platform if some modularity is added, for example the capability to adapt different detector signals to the RFSoC module by means of some daughter board
- ⇒ The SoC potentially opens the door to more powerful UFO or beam loss anomalies search algorithms, using SW based or ML algorithms

4.-RFSoC path: Processor comparison (Men A25 vs Arm 56)

CÉRN

VMEbus CPU board based on Intel's Xeon D-1519 server CPU (4 cores, 1.5GHz)
Caches: cache (32K data + 32K instruction), L2 (256 K), LLC (1.5MB)
VMEbus interface is implemented as an open-source, FPGA-based solution (MBLT, theor. max ~40MB/s)
2x USB 3.2 ports, 1x Gb Ethernet ports and 2x RS232 COMs at the Front panel
8 GB DDR4 SDRAM (2.1GHz) with ECC and Flash
Slots for mSATA and microSD cards (?)
1x XMC slot or 1x PMC slot (typicall CTRP module as GMT timing Rx)
MTBF ~70000 h

KRM4ZU47DR SoM just as an <u>example</u>: UltraScale+ Gen3 <u>ZU47DR</u> RFSoC Arm Cortex-A53 (4 cores, 1.33GHz) Arm Cortex-R5F (2 cores, 533MHz) Arm Mali-400 MP GPU (667MHz)

2-8 GB DDR4 (as PS RAM), 2-8GB DDR4

(as PL RAM) working @ 2.4GT/s 64GB eMMC & 1GB QSPI 16+4 GTY/GTR transceivers @32Gb/s and 6.6Gbps 90 x 75 mm Carrier board needed:

Connectors, Timing Rx, powering

4.-RFSoC path : FECs on SoC vs FECs on dedicated SBC

BI Technical Board, 4th July 24

4.-RFSoC path additional data: ADC comparison

	FMC-1000
# ADCs	2
Fs _{max}	1.25 GS/s
# bits/ADC	14
ENOB	~10
Coupling	DC
BW	1 GHz
Input range	±0.42V
SNR	65 dB
SFDR	79 dB
THD	-78 dBc
NSD	-152 dBFS/Hz
Crosstalk	-95 dB
# DACs	2 (@1.23GS/s)
# bits/DAC	16
From factor	FMC, VITA 57.1

	RFSoC ZU47DR Gen 3
# ADCs	8
Fs _{max}	2.5GS/s / 5.0 GS/s 🙂
# bits/ADC	14
ENOB	
Coupling	
BW	6 GHz
Input range 🙂	1 Vpp 4.8 Vpp (with attenuation)
Digital Atten.	027dB (1 dB step)
SNR	
SFDR	84 dB 😃
THD	
NSD	-150 dBFS/Hz
Crosstalk	-75 dB
# DACs	8 (@ 6.5GS/s)
# bits/DAC	14

Notes:

- Use AD9680-BCPZ-1250 as ADC + LMK4828 as Clk jitter cleaner
- Analog Devices provides schematic & layout of Eval. Board : EVAL-FMCDAQ3-EBZ

SUMMARY

Summary

	Buy FMC-1000	other FMC digitisers	TimePix4 BLM	BCMF23 ASIC	RFSoC
Spares availab.	 ✓ 	✓	 ✓ 	✓	✓
Noise & interferences	×	×	✓ Optical tx	✓ Optical tx	×
Adaptative DR	X Req. additional HW	X Req. additional HW	To be studied	To be studied	 Some models contain var. atten.
DDR readout BW limitation	With FW change + concentrator	With FW change + concentrator	✓ High speed tcvrs between front-end and back end	✓ High speed tcvrs between front-end and back end	✓ if FESA in SoC fast and direct reading from the DDR.
HW effort	None	None / Medium	 Work already in progress 	High	High
FW effort	Refactoring	New design	New design (Synergies with BI-XEI)	New design (Synergies with BI-BL)	New design (Synergies with BI-BP)
SW effort	Low	Medium	Medium	Relatively high	Relatively high
Complexity / Risk	Low	Medium	Medium	Relatively high	Relatively high
Cost HW p∙y	120k 210k	50k200k 210k	110k 300k	<100k >210 kCHF	150k 210k
Development Time	1y	2у	2у	2у	2у
Other		Generic solution, eventually also valid for oBLM, or other devices	 Work already in progress 		Generic solution, eventually also valid for oBLM, or other devices

Conclusions

- It has been presented the number, locations and types of dBLM systems in the different machines
- It has been listed the aspects where consolidation is needed
- It has been listed 5 different possible strategies that could improve some of these consolidation points
- It has been described the main characteristics, pros, cons and estimated cost of the different strategies
- Next steps?
 - Testing the TPX4-BLM could provide useful insights about its suitability as fast BLM system.
 - BI's RFSoC could become a standard platform for more systems if some modularity is added. For example, add the ability to attach analogue daughterboards needed for other systems.

Thank you for your attention

Time for questions and comments

