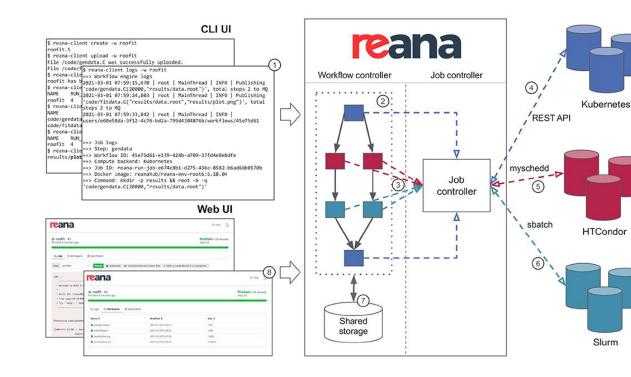
REANA reproducible analyses: status update

M. Donadoni, T. Šimko

CERN


4th DPHEP Collaboration Workshop, October 2nd-3rd 2024

https://indico.cern.ch/event/1432766/

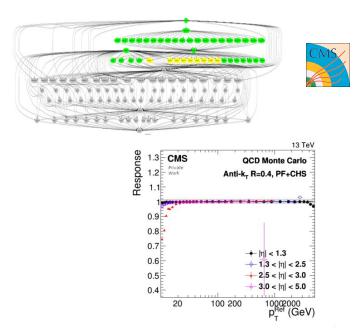
1

What is **REANA**?

Running containerised analysis workflows on the cloud

Multiple compute backends:

- Kubernetes
- HTCondor
- Slurm


Multiple workflow languages:

- CWL
- Serial
- Snakemake
- Yadage

Multiple means of use:

- Command-line client
- Web UI

Use cases: data production and data analyses

Data production example: CMS jet energy resolutions and corrections https://github.com/alintulu/reana-demo-JetMETAnalysis

Data analysis example: ATLAS displaced jet reinterpretations https://cds.cern.ch/record/2714064

ATI AS Preliminary

AS displaced iets result

RECAST result, high-E - selection

--- Exp. ± 1σ, 2σ

mu, m = [125,50] GeV. ca

 χ proper decay length ($c\tau$) [m]

10

[qd]

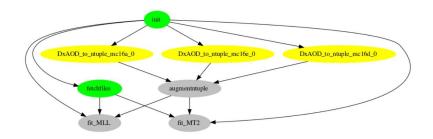
8 10

ы 10

CL Upper Limit 10

92%

10


10

0

ATLAS pMSSM searches

🤞 GitLab 🛛 🗮 Menu	Search GitLab	9 D(3) IX	<u> </u>
susy	recast-atlas > susy		
Subgroup information Epics O Issues Merge requests O	S SUSY (1) Group ID: 17287 (2) RECAST for ATLAS SUSY		۵ -
Packages & Registries 出 Analytics	Subgroups and projects Shared projects Archived projects	Search by name	Updated date \vee
⊋ Wiki	🗈 🦻 pmssm-cast 🛈		86 1
	□ A ANA-SUSY-2020-16 ① RECAST specs for SUSY EWK with multiple b-jets analysis (ANA-SUSY-2020-16)	* 0	21 hours ago
	A ANA-SUSY-2018-16 B Reporter RECAST specs for ANA-SUSY-2018-16	*1	2 weeks ago
	A ANA-SUSY-2019-02 D Recast workflow specs for 2L0J second wave analysis	* 0	1 month ago
	A ANA-SUSY-2018-05 T ARACLARY ANALYSIS	* 0	1 month ago
	A ANA-SUSY-2018-41 D Recast space for EWK Fully Hadronic analysis ANA-SUSY-2018-41	* 0	1 month ago
	A ANA-SUSY-2019-17 D RECAST specs for SUSY Staus 2nd wave analysis (ANA-SUSY-2019-17)	*1	1 month ago
	A ANA-SUSY-2018-32 D RECAST specs for first wave 2L0J	* 0	1 month ago
	A ANA-SUSY-2020-27 D RECAST specs for SUSY Strong SS/3L 2nd wave analysis (ANA-SUSY-2020-27)	* 0	2 months ago
	ANA-SUSY-2018-09 D RECAST specs for Incl SS analysis (ANA-SUSY-2018-09)	* 0	2 months ago
	A ATLAS-CONF-2018-041	★ 2	3 months ago

Figure 1. A screenshot of the ATLAS SUSY group analyses preserved on GitLab. Each repository is labeled with the internal ATLAS analysis identifier and contains both workflow files and additional data files needed for the computational processing.

Figure 2. A typical pMSSM workflow. The computational runtime is about 10 minutes without systematics (test payload) and about 10 hours with all systematics (real payload).

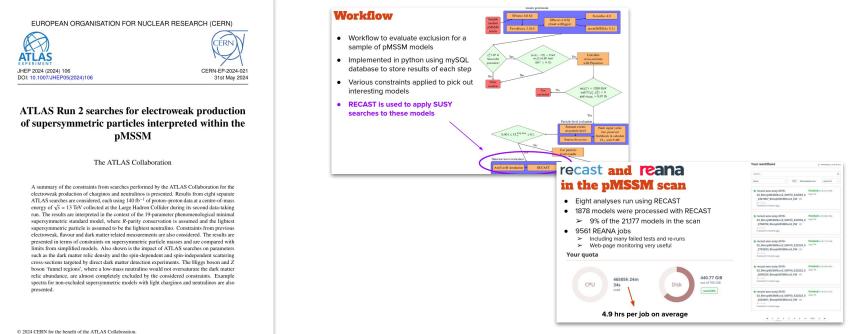


Figure 8. A scalability test submitting 200 workflows every 10 minutes. A cluster with 448 cores (left) cannot keep up with the load. A cluster with 1072 cores (right) can comfortably hold the incoming workload.

https://arxiv.org/abs/2403.03494

Streamlining the execution of thousands of reinterpretation workflows at scale

First ATLAS pMSSM Run-2 searches published

Ben Hodkinson

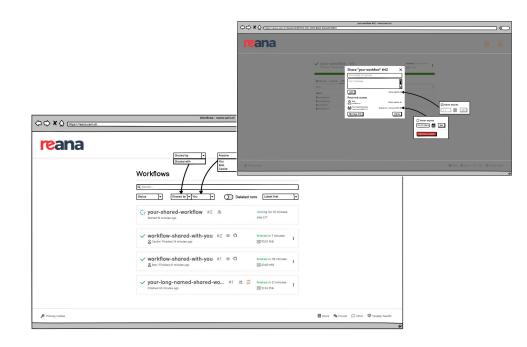
https://indico.cern.ch/event/1380367/

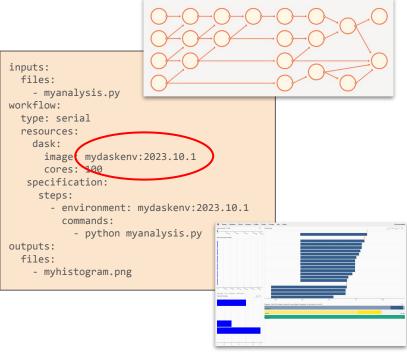
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

2024

May.

30


[hep-ex]


392v2

01.

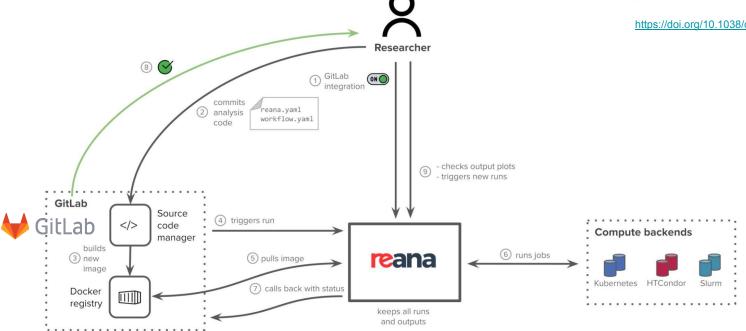
arXiv:2402.

A glimpse on forthcoming REANA features

Support for Dask workflows

Share workflows with colleagues

Driving future reproducibility


WORLD VIEW · 24 MAY 2018

Before reproducibility must come preproducibility

Instead of arguing about whether results hold up, let's push to provide enough information for others to repeat the experiments, says Philip Stark.

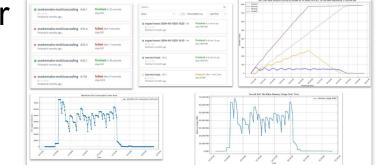
https://doi.org/10.1038/d41586-018-05256-0

REANA as a continuous integration engine for source code management systems

Community

IRIS-HEP HSF Analysis preservation training (Valencia, October 2023) https://hsf-training.github.io/hsf-training-reana-webpage/

HSF trainings on reproducibility



Workshop on workflow languages for HEP (May 2024) https://indico.cern.ch/event/1380367/

Seeking synergies across experiments

HSF Analysis Facilities White Paper

THE HEP SOFTWARE FOUNDATION (HSF)
HSF-TN-2024-01 April 2024
Analysis Facilities White Paper
D. Claugathin ^{1,4} , A. Kert ^{2,4} , L. Heindel ^{3,4} , N. Skidnen ^{4,4} , C. Alpigiand Paris ^{1,7} , C. Diegiand ^{1,6} , D. Kert ^{2,4} , P. Elme ^{1,1} , L. Kerton ^{4,4} , N. Zifomo ^{4,6} , A. Gardner ^{4,} , V. Garonne ⁴ , M. Gilde ^{4,4} , P. Elme ^{1,1} , L. Schle ^{3,1} , M. Skidne ^{1,4} , J. Ford ^{4,4} , R. Gardner ^{4,4} , V. Garonne ⁴ , M. Gilde ^{4,4} , P. Elme ^{1,1} , L. Kach ^{4,2} , J. Ford ^{4,4} , B. Hegne ^{1,4} , J. Leng ^{4,4} , P. Lane ^{1,1} , J. Ford ^{4,4} , R. Schle ^{3,4} , M. Shidh ^{2,4} , J. Schla ^{4,2} , M. Schle ^{4,4} , J. Heinde ^{4,4} , T. Komito ^{4,4} , T. Kuhl ^{4,4} , E. Lauce ^{1,4} , P. Laug ^{4,4} , J. Lend ^{4,4} , Y. Kach ^{4,4} , J. Heind ^{4,4} , M. Schle ^{4,4} , J. Heind ^{4,4} , J. Heind ^{4,4} , M. Schle ^{4,4} , J. Heind ^{4,4} , S. Kach ^{4,4} , J. Hu ^{4,4} , J. Kont ^{4,4} , S. Kach ^{4,4} , J. Hu ^{4,4} , J. Kach ^{4,4} , J. Hu ^{4,4} , K. Kach ^{4,4} , J. Hu ^{4,4} , J. Kach ^{4,4} , J. Kach ^{4,4} , J. Kach ^{4,4} , K. Stehn
 ⁴ Other ¹² Madage Mann ¹² Other ¹² Madage Mann ¹² Default Manna ¹² Other ¹² Default Manna ¹² Default
© Leence CC-BV-4.0. Keywords: High energy physics, analysis facilities, data analysis, scientific computing, data access, grid computing, federated identity management, analysis preservation, resource provisioning, IL-LHC

Analysis Grand Challenge IRIS-HEP implementation

- Columnar data extraction from large dataset
- Processing of that data (event filtering, construction of observables, evaluation of systematic uncertainties) into histograms
- Statistical model construction and statistical inference
- Relevant visualisation for this steps
- + Adding analysis preservation step to AGC pipeline

https://indico.cern.ch/event/1446410/

Analysis Grand Challenge CMS ttbar analysis on REANA (see forthcoming CHEP 2024 talk)

https://arxiv.org/abs/2404.02100

Recent new deployments A Reana testhed in the US ATLAS Computing Facility Eric Lancon 04/04/24 PUNCH 4NFD Proposal: Deploy a test Services at AIP Services at KIT Unlocking New Possibilities with the US Reana Test C4P Workers Instance Reana Dedicated to ATLAS reana Compute4PUNCH Instance in · Faster analysis time than CERN Login Node · Large available batch pools at the US Analysis Facilities, much the US ATLAS C4P Workers larger in size than the Reana cluster at CERN, SSH · Accelerating the analysis process and opening new Computing opportunities · Enabling a 'hybrid' model where a batch farm is used for Facility reana HTCondor Central Manager CPU-intensive tasks · Interfaced with grid storage C4P Workers reana-iob-controlle · Additionally, batch CPU resources could either be: Dedicated ATLAS cluster (T2) · Opportunistic usage or by reservation/campaign (implementation to be worked on) of additional resources at local institutions Hardware Software **User Portals** Compute reana COCALC Nodes containers kubernetes slurm GPUs MinIO-S3 À Lustrefs-IB Glusterfs/nfs reana Storage GitLab MINIO Infiniband Network: 10G 1G Intern/Public Sign in with UC Keyclock Single Sign-On Job queues, resource management reana slurm

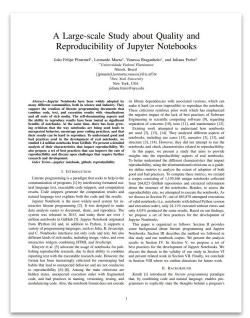
REANA @ AIP (astronomy) https://reana-p4n.aip.de/

https://indico.desv.de/event/44722/

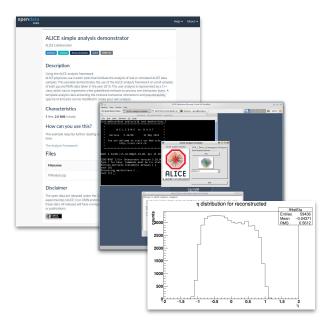
REANA@UChicago (ATLAS Analysis Facility) https://reana.af.uchicago.edu/ https://indico.cern.ch/event/1386696/

Use case 1: Is preserved data correct?

Verifying data provenance SingleElectron primary dataset in AOD format from RunA of 2011 SingleElectron primary dataset sample in RAW format from RunA (/SingleElectron/Run2011A-12Oct2013-v1/AOD) of 2011 (from /SingleElectron/Run2011A-v1/RAW) Ilaboration (2019). SingleElectron primary dataset s /Run2011A-v1/RAW). CERN Open Data Portal. DOI:1 Street Control Day 2017 Summer Autour Concord Chrs. 2542 (1995) 10 Description Description A sample from SingleElectron primary dataset in RAW format from RunA of 2011, Run range [161224.163286 This dataset contains selected runs from 2011 RunA. The list of validated lumi sections, which must be applied to all analyses on events reconstructed from these data, can be found in Dataset characteristics /3Jet_Pt43_doubleEMEnriched_TuneZ2star 8TeV ext 41709195 events. 1542 files. 5.8 TB in total. pvthe6/Gummer12_DR53X-PU_RD1_START53_V7N-v1/AODSIM Bringland detect GJet 1960 doubleEMEnriched TuneZister (Tel/ end-evhip) in How were these data selected? Dataset characteristics 2064298 events. 116 files. 424.3 GB in tota Deto taking / HL /3 Pt-800to1400 TuneZ2star 8TeV pvthia6/ How can you use these data? PU_RD1_STARTE3_V7N-v1/A0DSI Deta processing / RECO These data are in RAW format and not directly usable in analysis. The reconstructed data reprocessed from these RAM data are included in the data of this record. The reconstruction step can be repeated with the configuration file below Release: CMSSW 5 3 12 patch and the resulting AOD has been confirmed to be identical with the original one with comparison code available in Control Control Control Control Control AOD RAW Simulated dataset G_Pt-800to1400_TuneZ2star_8TeV_pythia6 in AODSIM format for 2012 collision data How were these data generated dataset=Jet opendata year=2011A 1 input parameters 5 serving open data files - reana-2 workflow factory 4 run by REANA platform CMS open data coming with detailed 3 6 output reana.yaml provenance information histograms https://doi.org/10.1051/epic onf/202024508014

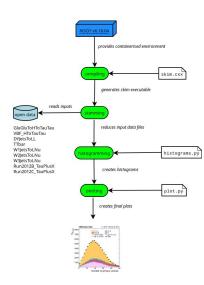

Reprocessing AOD from RAW samples

Use case 2: Is preserved data usable?


Verifying usage patterns

EADME	/ =
low to run this?	
et the software stack	
e analysis needs solely a ROOT installation (6.22 or greater). You can get the software easily sen Data VM and CVMES. Just run the following command in the terminal (adapted to your : appropriate software stack:	
source /cvmfs/sft.cern.ch/lcg/views/LC0_99/x86_64-centos7-gcc10-opt/setup.sh	Q
kim the datasets	
e skimming reduces the initial dataset to only the events needed for the analysis. This part the file skim.cxx. To compile and run the program, use the following commands.	is written in C++
g++ -g -08 -Mall -Mextra -Mpedantic -o skim skim.cxx 8(root-configcflagslibs) ./skim	Ø
roduce histograms	
ext, we want to produce histograms for most of the variables in the dataset. To make a commutation to data, we have to produce a histogram for the simulated processes and the actu corded at CMS. The histograms are produced in a Python script implemented in <u>histogram</u> in with following command.	al data events
python histograms.py	P
lake plots	
e last step of this analysis is the combination of the previously produced histograms to figurated events and the data recorded at CMS on top of each other. This allows us to draw or apprennent between simulation and data and gives highly into the recorded data more production of the physical processes and their properties. Run the following hython script to eculdud the previous step.	onclusions about ling the
python plot.py	0

How-to-run recipes in README files is a good start; but they are not actionable



"Out of 863,878 attempted executions of valid notebooks (...) only 24.11% executed without errors and only 4.03% produced the same results"

ALICE pt analysis example in the VM stopped working due to microCernVM format compatibility issues

"Continuous reuse"

An example studying $H \rightarrow \tau \tau$ lepton decays uses nine published CMS open datasets

Feature: cms-htautau-nanoaod

Scenario: Workspace content When the workflow is finished Then the workspace should contain "njets.png" And the workspace should contain "phi_1.png"

Scenario: Workspace size When the workflow is finished Then the workspace size should be less than 75 MiB

Scenario: Log content
When the workflow is finished
Then the job logs of the step "skimming" should contain \
 "Event has good muons: pass=36921"
And the job logs of the step "histogramming" should contain \
 "Muon transverse mass cut for W+jets suppression: pass=5063"

Scenario: Run duration When the workflow is finished Then the workflow run duration should be less than 25 minutes And the duration of the step "skimming" should be less than 20 minutes

Define expected outcomes in natural language thanks to Gherkin behavioural test language

- check workspace content and output files
- check produced log messages
- check execution duration of steps

reana	۵	8
higgstotautau #1 finished in 6 Finished 5 minutes ago stap 44	nin 50 sec	
© Engine loga 3job loga □ Workspace 🔒 Specification		
Step hotogramming v Swithel in Sciences. de Kalemanna de reasultativeza enversetáci.t.t.tel 1 python himogram.py		
jan : here the second s		
Num transverse mass out for W-jets suppossion: pass:2770 all:22070 effrigi.30 % comulative effrigi.66 % Require isolated most for signal region: pass:2533 all:2270 effrigi.63 % comulative effrigi.63 % Require apposite charge for signal region: pass:2543 all:2553 effrigi.63 % comulative effrigi.13 %		

Test outcomes periodically on REANA

Dashboard monitoring continuous reuse of periodically re-executed open data analysis examples

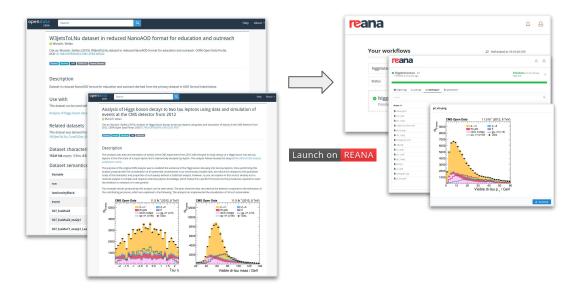
1	4

Making sure data remains usable

	Analyses ~							
	Last success	Last failure		R1	R2	R3	R4	R5
alice-lego-train-test-run	5 hours ago		00:01:35					
alice-pt-analysis	5 hours ago		00:01:10					
atlas-recast	5 hours ago		00:01:10					
cms-dimuon-mass-spectrum	8 days ago		00:01:03					
cms-dimuon-spectrum	5 hours ago		00:01:22					
cms-dimuon-spectrum-nanoaod	5 hours ago		00:01:52					
<u>cms-h4l</u>	5 hours ago	2 days ago	00:02:02					
<u>cms-h4l-nanoaod</u>	5 hours ago		00:03:46					
cms-htautau-nanoaod	5 hours ago		00:07:08					

1+				23 See all analyses
			No dela	
	failed			
	taled			
	failed			
	Inshed			
	fished			
	fishel			
	Inished			
			CASTR 05:00 CASTR 05:	

- displays a history of various reuse examples and their statistics
- allows to quickly check the last success and failure timestamps
- shows the results of last five runs
- displays duration of individual steps


Conclusions

REANA as an "analysis engine" complementing your data preservation repository activities.

Ultimate goal: facilitate future reuse of scientific data.

- Use cases for "preproducible" analyses
- Use cases for data provenance verification
- Use cases for analysis reinterpretations
- Use cases for data usage pattern validations

"adaptable software examples [are] the most efficient way to pass on the knowledge needed for research-level studies on [the] data" — CMS

Data + Code + Environment + Services + Workflow = Reusable Analyses