

Swiss Accelerator Research and Technology

SMACC 13 T

HFM Forum

D. Araujo on behalf of CHART/MagDev2 team PSI, 18 July 2024

Work packages overview – KE5943

RD Line	Work Package 🚽	Tasks, deliverables	TASK/DELIVERABLE DESCRIPTION		
RD2	RD2	RD2	HTS Conductors and HTS Magnet Technologies		
RD2	WP2.19	WP2.19	R&D relating to HTS technology - PSI/CHART collaboration KE5943		
RD2	WP2.19	D2.1	HTS Roadmap Conceptual Report		
RD2	WP2.19	D2.2	ReBCO Cable Test Report		
RD2	WP2.19	D2.3	Technology Racetrack Test Report		
RD3	RD3	RD3	Nb3Sn Magnets		
RD3	WP3.14	WP3.14	R&D relating to LTS technology - PSI/CHART collaboration KE5943		
RD3	WP3.14	D1.1	BOX Powered-Sample Test Report		
RD3	WP3.14	D1.2	SMCC Sub-scale Test Report		
RD3	WP3.14	D1.3	SMCC Ultimate-Field Demonstrator Conceptual Design Report		
RD3	WP3.14	D1.4	SMCC Ultimate-Field Demonstrator Technical Design Folder		
RD3	WP3.14	D1.5	Reel-to-reel Inspection and 10-Stack Characterization of Cables as Received		

This Presentation

SMACC Concept + 2D and 3D magnetic analysis

Stress-Managed Asymmetric Common-Coils Conceptual Design | Motivation

In respect to standard common-coils magnet, we would like to:

- Introduce stress-management for common-coils
- Simplify the manufacturing processes (no curing, no mold for reaction and impregnation)
- Have a design suitable to try react & winding technique for Nb₃Sn

3

- Goals and Assumptions
- 2D and 3D Magnetic Analysis
- 2D Mechanical Analysis
- Powering, Cryostats and Protection
- Cable Need Overview
- R&D activities
- Plan

Goals and Assumptions

Assumptions

- 4 layers (per side) magnet design
- High-field coils (layers 1 and 2) made out the existent R2D2 cable design
- Low-field coils (layers 3 and 4) made out the existent 400 m of produced 34 x 0.7 mm cable produced with the Nb₃Sn RRP[®] 78/91
- Straight-section of 0.5 m
- External shell diameter < 800 mm
- Intra-beam distance of 250 mm
- Clear bore of 50 mm

Goals

- Build and test the first stress-managed asymmetric common-coils
- Validate the concept, modelling assumptions and manufacturing steps before the building the 14 T demonstrator
- 13 T at 4.22 K with 10% of eng. margin
- Protection with Energy Extraction limiting the voltage to 1 kV
- 2 identical low-field layers
- Field quality to the level of ± ~10 units

Cross-section

Layers	1	2	3/4
Wire type	Nb₃Sn RRP® 162/169	Nb ₃ Sn RRP® 162/169	Nb₃Sn RRP® 78/91
N wire x dia in mm	21 x 1.1	21 x 1.1	34 x 0.7
Cu/nCu	0.9	0.9	1.2
Bare Cable dimensions in mm	12.74 x 2.06	12.74 x 2.06	12.77 x 1.3
Insulation thickness in mm	0.155	0.155	0.155
Number of turns	9	38	50/50

Conductor performance assumptions

7

Wire type	Nb₃Sn RRP® 162/169	Nb₃Sn RRP® 78/91		
dia in mm	1.1	0.7		
Cu/nCu	~0.9	~1.2		
dia sub- element in µm	64	54		
CERN denomination	DEM-1.1	ERMC-0.7		

665 C/ 50 hr

3% of degradation due to cabling Corrected with self-field contribution

- Goals and Assumptions
- 2D and 3D Magnetic Analysis
- 2D Mechanical Analysis
- Powering, Cryostats and Protection
- Cable Need Overview
- R&D activities
- Plan

Magnetic Design | 2D

Self-field included

9

Magnetic Design | 3D

B_0 of 13 T	B _{peak} in T Self-field	B _{peak} in T No self- field	% Margin	l _{op} in kA
2D	13.96	13.67	10.9	14.16
3D	-	13.69	10.0	14.10

3D	B ₀ of 13.0 T	E = 1.7 MJ	L = 16 mH	~100 MJ/m ³
----	--------------------------	------------	-----------	------------------------

2D	B ₀ of 13.0 T	Fx = 10 MN/m	Fy = 0.6 MN/m

2D vs 3D Magnetic Analysis Field Quality

×

12000

14000

×

- 40 units from 2D to 3D

- Goals and Assumptions
- 2D and 3D Magnetic Analysis
- 2D Mechanical Analysis
- Powering, Cryostats and Protection
- Cable Need Overview
- R&D activities
- Plan

Cross-section

Dext shell = 720 mm Shell thickness = 35 mm Cooling channels and rod d = 42 mm

Shell and keys Outer and inner vertical pad Horizontal pad and non-magnetic pole Coil formers

Mechanical Analysis | 2D | 13 T

130 MPa with higher peaks on the insulation thickness

600 MPa (SEQV) with higher peaks 635 MPa (S1) on the former corner

Mechanical Analysis | 2D | 13 T

ANSYS 2022 R1.02 Build 22.1 PLOT NO. 1 NODAL SOLUTION STEP=3 SUB =1 TIME=3 S1 (AVG) PowerGraphics EFACET=1 AVRES=Mat DMX =.942E-03 SMX =.211E+09 0 .235E+08 .470E+08 .705E+08 .940E+08 .117E+09 .141E+09

.164E+09

.188E+09

.211E+09

Nominal field

460 MPa (Stheta)

Nominal field

210 MPa (S1)

Mechanical Analysis | 2D | Pre-load

2D vs 3D Magnetic Analysis Field Quality

2D and 3D skew multi-poles 30 20 10 0 -10× 2D a2 × a4 × a6 -20 a8 × × × 3D a2 × × × 8000 2000 4000 10000 6000 12000 14000 I in A

- 40 units from 2D to 3D

Page 17

2D vs 3D Magnetic Analysis Field Quality

- 40 units from 2D to 3D

- Goals and Assumptions
- 2D and 3D Magnetic Analysis
- 2D Mechanical Analysis
- Powering, Cryostats and Protection
- Cable Need Overview
- R&D activities
- Plan

Powering, Cryostats and Protection

SM-18, 20 kA thyristor-based PS on the HFM Cryostat

- Protection with dump resistor would require Vmax > 1 kV (or 1 kV, ground, 1 kV)
 - The 20 kA PS is not grounded on the central point and Vmax is limited to 1 kV
- Protection with varistor
 - The 20 kA thyristor based PS seems to be incompatible with varistor
 - The Cluster D power supply
- Protection with CLIQ and dump resistor
 - Compatible with the 20 kA PS and Vmax < 1 kV

SM-18, 15 kA IGBT based PS on the Cluster D

• Protection with varistor with Vmax of 1 kV

STEAM-LEDET sims of PSI SMCC 500 Σ temperature 450 400 350 hot-spot 300 250 Adiabatic 200 150 15 5 10 20 25 30 n Quench detection + validation + triggering time [ms] --1 kV EE ---1 kV Varistor

STEAM-LEDET, E. Ravaioli

Cluster D: 800 mm and intrabeam of 194 mm SMACC1: 720 mm and intrabeam of 250 mm

- Goals and Assumptions
- 2D and 3D Magnetic Analysis
- 2D Mechanical Analysis
- Powering, Cryostats and Protection
- Cable Need Overview
- R&D activities
- Plan

SMACC 13 T Cable need overview

Total cable need for a 0.5 m straight section SMACC 13 T No spare coils considered in the table bellow

Layer	N turns	N Strands per turn	Average turn length in m	cable length per layer	Total cable length per type	
1	9	21 (DEM-1.1)	1.6	15	170	
2	38	21 DEM-1.1)	1.8	70	170	
3	50	34 (ERMC-0.7)	1.8	90	260	
4	50	34 (ERMC-0.7)	1.8	90	- 300	

- Goals and Assumptions
- 2D and 3D Magnetic Analysis
- 2D Mechanical Analysis
- Powering, Cryostats and Protection
- Cable Need Overview
- R&D activities
- Plan

R&D Activities

Ongoing

HTS-based splicing between layers for SMACC PSI / University of Twente Compression BOX using the SMACC 13 T / high-field cable Preparation of samples for B-H curve measurement in cryogenics temperature with CERN Cable trials using the SMACC 13 T / high-field cable Filled Wax impregnation trials (PSI 4-stack) using the SMACC 13 T / high-field cable Axial Pre-load System using commercial Bolt Tensioners

To start soon

Development of a setup to pressurize the bladders Cable trials using the SMACC 13 T low-field cable (shipment pending)

- Goals and Assumptions
- 2D and 3D Magnetic Analysis
- 2D Mechanical Analysis
- Powering, Cryostats and Protection
- Cable Need Overview
- R&D activities
- Plan

Version: June, 2024		 Aug 2024	Sep Oct 2024	Nov Dec 2024	Jan Feb 2025	Mar Apr 2025	May Jun 2025	Jul Aug 2025	Sep Oct 2025	Nov Dec 2025
Concept	Finished conceptual design and review									
Design	Preliminar eng. design									
	Formers and winding, reaction and impregnation toolings design				Procurement					
	Magnet and integration design				Pr	ocureme	ent			
	2 x Coil 1									
Coil fabrication	2 x Coil 2									
and	4 x Coil 3 / 4									
instrumentation	Intra-layers splicing and coil packs assembly									
Assembly validation	Structure instrumentation									
	Bladders & Key, axial pre-load				Procurement					
	Cooling-down with dummy coils					Procure	ement			
Final assembly	Magnet assembly, pre-load, checks and shipment to CERN									
Testing Cryostat integration and testing										