

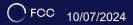
REPORT ON IP FEEDBACK STUDIES AT SUPERKEKB

188th FCC-ee Accelerator Design Meeting 10/07/2024

FCCIS: 'This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.

Outline

Introduction


SuperKEKB IP Feedback

SuperKEKB iBump Feedback Study

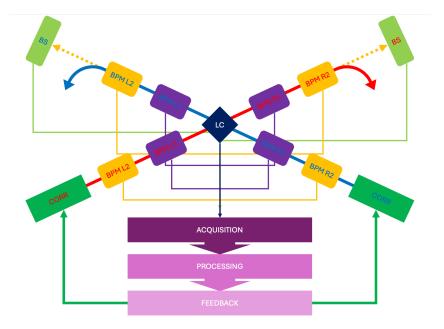
SuperKEKB Optics Modelling

Open questions for FCC-ee

With thanks to Frank Zimmerman, Phil Burrows and all FCC-ee colleagues

John P T Salvesen

3


INTRODUCTION

Interaction Point Feedback

Required to maintain luminosity and beam lifetime

Cannot be an afterthought

- Local correction
- Strict requirements at FCC-ee:
 - EPOL requirement for collision offset of within ~0. $1\sigma_y$ (J. Keintzel)
 - Physics performance requirement for collision offset within $\sim 0.02\sigma_v$ (J. Wenninger)
 - Beam-beam stability requirement for collision offset within ~0.05σ_y (D. Shatilov)
 - Centering within detector within $\sim 100 \mu m$ (M. Dam)

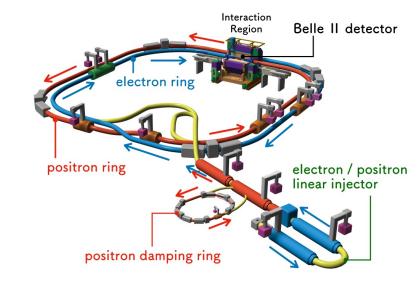
Feedback Types

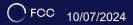
Beam-Beam Deflection

- Detect an offset using a combination of upstream and downstream BPMs (or by using beamstrahlung light)
- Requires resolution of the monitor better than the downstream offset
- For small offsets (the case required for beam stability) well approximated by the linear model
- Implemented at SLC and SKEKB (vertical)
- For large beam-beam parameters

Dithering

(horizonal)


- Applies in cases where beam beam parameter is small (all horizontal except tt)
- Drive one beam with a known frequency
- · Detect the modulation of luminosity
- Nullify this component to optimise luminosity
- Developed at PEP II, implemented at SKEKB


Credit: Katsunobu Oide

SuperKEKB Studies

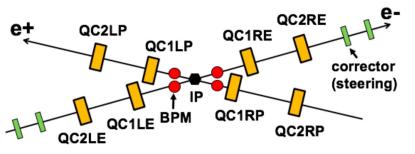
- Secondment May-June 2024 under EAJADE
- SuperKEKB Secondment Activities
 - Participation in IP feedback tuning
 - Tour of interaction regions and IP Feedback system
 hardware
 - Dedicated MD time: testing drift of 'IP feedback target' with beam current
 - SuperKEKB Optics Modelling with Xsuite
 - Simulation meetings
 - Tour of Oxford FONT feedback system at ATF2

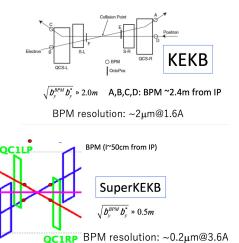
SUPERKEKB IP FEEDBACK

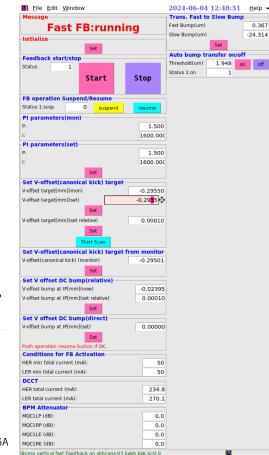
SuperKEKB IP Feedback

- Two types of Feedback:
 - iBump Deflection feedback
 - Hardware based fast feedback
 - Slow CPU based feedback
 - Dedicated horizontal and vertical correctors in IR straight
 - Dither Feedback
 - Currently unused
 - SLAC collaboration
 - Air cooled, yoke free correctors (left) in IR straight

- LER (e+) beam corrected with global feedback only
- HER (e-) beam corrected with IR correctors

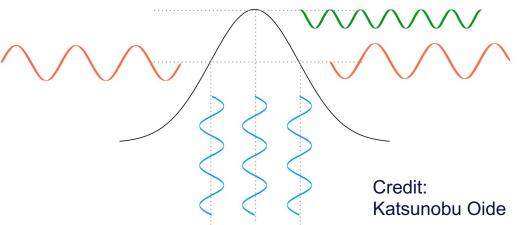






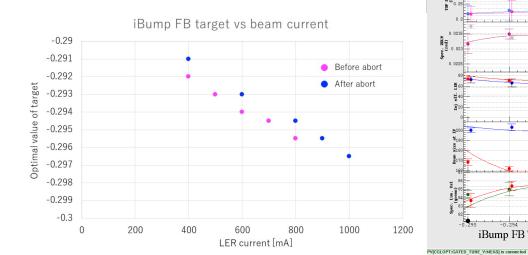
SuperKEKB iBump Feedback

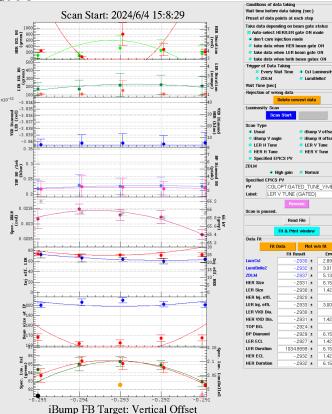
- Based on signals from BPMs ~0.5m from IP
 - Mechanically coupled to IP (BELLE-II)
- · Dedicated correctors outside final focus quadrupoles
- Based on a matrix approach
 - Offset at IP calculated from BPM deflections
 - Linear Theory



SuperKEKB Dither Feedback

- Currently unused
 - Running far from nominal parameters
- Upgrade planned
 - From analogue to digital control board
 - Perhaps autumn this year, run schedule permitting




11

SUPERKEKB IBUMP FEEDBACK TARGET STUDY

MD: SuperKEKB Feedback Target Scan

- From the BPM signals a relative offset is calculated
- Also requires a feedback target
- This target is scanned for typically at the start of each shift
- This target is observed to drift with current
- It also seems to drift with other events e.g. beam loss

2.89641E

6.15450E-

42215E-4

8.00011E-4

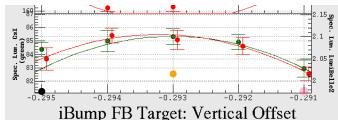
42215E-4

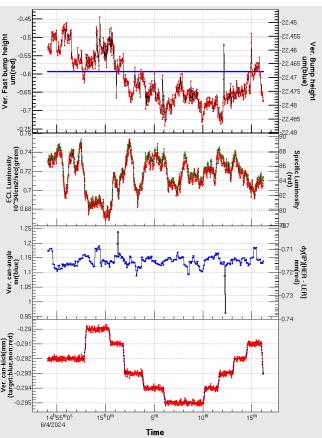
6 15450E-

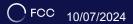
.42215E-

42215E-

6.15450E-4


.0015

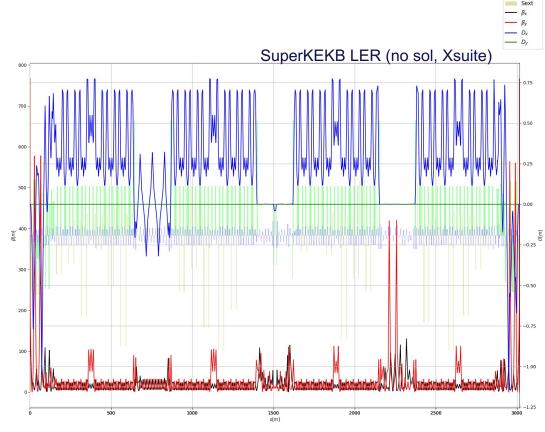

0064

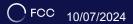

2024-06-04 15:15:4

SuperKEKB Luminosity Variance

- Measuring the feedback target also poses difficulties as luminosity is unstable over these timescales
- Shown: target scan and the measurements over the same timeframe
- Clear jitter of the luminosity within each measurement period (step on the vertical canonical kick) is observed
- This makes feedback tuning difficult, and demonstrates luminosity loss vs nominal

John P T Salvesen




14

SUPERKEKB OPTICS MODELLING

SuperKEKB Optics Modelling

- Xsuite SuperKEKB lattice model is in active development in Xsuite
 - Collaboration between J. Salvesen, G.
 Broggi and G. ladarola
 - Supported by Optics team at KEK (H. Sugimoto)
- Hoping to have the model ready in the coming weeks

16

CERN

OPEN QUESTIONS FOR FCC-EE

Requirements

- IP Position Requirements
 - Current value of $\sim 100 \mu m$ (M. Dam)
 - Approximate value
 - Luminosity monitor requires within $\sim 500 \mu m$
 - Stricter requirement than this for physics performance?
- Offset tolerance
 - Currently multiple different values
 - Strictest is J. Wenninger ("Opposite sign dispersion and collision offsets at the IPs")
 - collision offset within ~0.02 σ_y (nm or below)

This seems ambitious....

Input Signals

- Beam Position Monitors
 - Number of BPMs within the IR?
 - BPM Placement?

All dependant on the cryostat and FFQs

- Beamstrahlung Monitor
 - Discussions ongoing with BI
- Luminosity Calorimeter
 - Availability of data directly from the detector luminosity calorimeter?

Correctors

- Number of correctors and placement
 - Space?
 - · Is there the luxury of dedicated correctors just for the IP feedback?
 - Do these correctors need to be used for multiple systems?
 - · Impact on SR/backgrounds at the detector?
- For simulations on the response of the feedback, need further details:
 - Corrector response
 - Beam-pipe response (placement dependant)
 - Power supply response and stepping

Global Feedback (!!!)

- Will global feedback be good enough that IP feedback only needs to be applied to one beam?
- What is the global feedback strategy?
 - Correction timescales?
 - Correction locations?

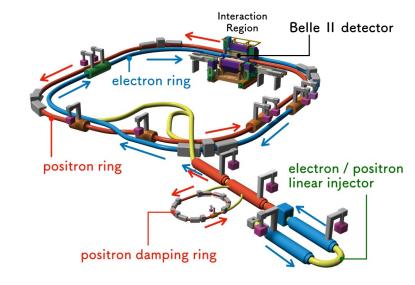
Error Sources

Ground motion vibration

Ongoing discussions with LAPP to address this

• Other mechanical sources?

Thank you for your attention.


22

APPENDICES

SuperKEKB Studies

- Why SuperKEKB?
 - Similarities to FCC-ee design
 - Nano-beam scheme
 - Crab collision optics with cryogenic final focus
 - Single IP
 - Simplified feedback system vs FCC-ee requirements

Interaction Region Considerations

- Several key beam-beam effects at play:
 - The hourglass effect (focusing)
 - Dynamic Beta (beta dependance on beam-beam)
 - Loss of dynamic aperture (chaotic motion)
 - Emittance blowup
 - Beamstrahlung radiation
- Strength of beam-beam effects quantified by the *Beam-Beam Tune Shift*
 - For comparison to linear colliders, disruption parameter in appendix

Parameter	Z	ww	ZH	tt
ξ _x [10 ⁻³]	2.2	13	10	73
ξ _y [10 ⁻³]	97.3	128	88	134

Linear Beam-beam deflection

$$\Delta a' = \pm \frac{2\pi}{\beta_a^*} \xi_a \Delta a \qquad a \in x, y$$

The beam beam deflection is directly proportional to the beambeam tune shift within the linear regime

Recirculating beam: Beam quality must be maintained to maintain luminosity and lifetime