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Lattice Optimisation for LHC, HL-LHC

Maximize luminosity, beam
stability, and minimize particle
losses from high energy beams to
prevent equipment damage
(HL-LHC beams: 700MJ)

Accelerator lattice quality assessed
through single-particle tracking

Ideal scenario: single-particle
tracking for 108 turns (≈ 10 hours
of LHC runtime) LHC Schematic
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Probing Beam Dynamics at 108 turns

Realistic LHC lattice simulations reach 106 turns: 104

particles takes ≈ 2 days on GPU

Hénon map: simplified model, allows tracking 104 particles up
to 108 turns in ≈ 2 hours

The Hénon map gives fundamental behaviour expected from a
realistic accelerator lattice:

 xn+1

px,n+1

yn+1

py ,n+1

 = R (ωx,n, ωy ,n)︸ ︷︷ ︸
Linear part

Dipoles, Quadrupoles


xn

px,n +x2n − y2
n + µ

(
x3n − 3xny

3
n

)
yn

py ,n −2xnyn + µ
(
y3
n − 3ynx

3
n

)︸ ︷︷ ︸
Non-linear magnet kick
Applied as δ function


Modulation introduced by varying ωx ,y with number of turns n
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Chaotic Regions of phase space

Initial separation ϵ between two initial
conditions grows over time according to:

|(x0 + ϵξ)n − xn| ≈ ϵeλn

Lyapunov Exponent λ

λ > 0 =⇒ orbit defined as chaotic
λ = 0 =⇒ orbit defined as regular

Faster identification of chaos −→ link between chaotic phase-space
regions and beam loss dynamics
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Lyapunov Exponent

λ = lim
n→∞

lim
ϵ→0

1

n
ln

∥(x0 + ϵξ)n − xn∥
ϵ

Mathematical object defined for n → ∞
Its value is estimated by means of chaos indicators

This study considers two (out of many!) chaos indicators:

Fast Lyapunov Indicator (FLI)

Reversibility Error Method (REM)
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Fast Lyapunov Indicator (FLI)

FLIn (x0, ξ) = lim
ϵ→0

ln
∥(x0 + ϵξ)n − xn∥

ϵ

Provides computation of the Lyapunov exponent for finite time
FLI/n (time average) converges to the Lyapunov Exponent as
n → ∞
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Two Ways to Generate the FLI
Tangent-map method: direct analytical computation, only
possible for Hénon map
Ghost-particle method: approximation, possible for any lattice

Examination of both methods shows no significant difference in
values at 108 turns for the two methods
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Reversibility Error Method (REM)

REM measures particle
displacement due to numerical
errors to evaluate chaotic behavior

Regular particles: power law
increase

Chaotic particles: exponential
growth, timescale determined by
Lyapunov exponent

Chaotic saturation corresponding
to diameter of bounded motion
region
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State-of-the-art Performance Analysis

Ranks chaos indicators according
to fast identification of chaos for
modulated Hénon map

Ground truth binary classification
at 108 turns

Classifications at smaller numbers
of turns provides benchmark
classification accuracy

REM was one of the
highest-performing indicators
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Kernel Density Estimation (KDE) Algorithm

−15.0 −12.5 −10.0 −7.5 −5.0 −2.5 0.0

Chaos indicator values (log10(REM))

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

KDE

Threshold

Regular Chaotic

−8 −6 −4 −2

log10(FLI/n)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
en

si
ty

KDE

Threshold

KDE estimates histogram
probability density function

Threshold set at KDE
minimum between peaks

Algorithm identifies how
quickly chaos indicator
values separate into bimodal
distribution

Not effective for multimodal
distributions

10



Improvement to the Classification Algorithm

−9 −8 −7 −6 −5 −4 −3

log10(FLI/n)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
en

si
ty

Silverman’s Rule of Thumb

KDE

Threshold Original contribution:
algorithm adaptation

Silverman’s Rule of Thumb:
statistical approach to
compute KDE

Better captures multimodal
histogram distributions

11



Benchmark Classification Accuracy
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Can the classification performance of chaos
indicators be increased through extrapolation
techniques?

ARIMA model: established extrapolation tool capable of
extrapolating trends using minimal set of free parameters

Linear combination of an autoregressive (AR) and/or moving
average (MA) model fit to a stationary time series:

Mean µ and white noise a with variance σ2
a

Data is differenced d times until stationary:

z ′t = zt − zt−1
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ARIMA model components

Auto-regressive (AR) model order p:

zt = µ+ at + ϕ1zt−1 + ϕ2zt−2 + ...+ ϕpzt−p ,

Moving Average (MA) model order q:

zt = µ+ at − θ1at−1 − θ2at−2 − ...− θqat−q ,

Combined ARIMA model order (p, d , q)

zt = µ+ at +ϕ1zt−1 + ...+ ϕpzt−p︸ ︷︷ ︸
AR component

−θ1at−1 − ...− θqat−q︸ ︷︷ ︸
MA component

Optimised parameters: µ, σ2
a , ϕ, θ
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ARIMA parameter scan to find optimal order
(p, d , q)
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Extrapolation performance after providing
data up to various numbers of turns
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Initial increase in accuracy, but subsequent decrease

Extrapolation accuracy never exceeds benchmark accuracy
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Extrapolation from 105 turns appears
promising ...
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ARIMA models appear capable of extrapolating power law
decrease trend
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Initial improvement but subsequent decrease
in accuracy?
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Extrapolations have not deviated enough from actual trend to
result in incorrect classifications at 105.70 turns
Various features of FLI emphasised just enough by ARIMA
model at 105.70 turns to increase extrapolation accuracy
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Providing data up to higher numbers of turns
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Extrapolation accuracy immediately decreases:

Overfitting for regular initial conditions

ARIMA failure to predict chaotic saturation
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ARIMA extrapolation of REM
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REM requires adaptations to fitting and extrapolation to avoid
fitting ARIMA models to pure noise for saturated data
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REM adaptation to parameter scan
Saturation before 106 turns: fit 80% of data before
saturation, extrapolate up to saturation

Saturation before 108 turns: fit up to 106 turns, extrapolate
up to saturation

No saturation before 108 turns: fit up to 106 turns,
extrapolate to 108 turns
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REM extrapolation results
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Benchmark never exceeded, but improvement in initial accuracy
observed when extrapolating from ≈ 105 turns to 108 turns
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REM extrapolation from 2× 105 turns
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Trend not exactly captured by ARIMA models

Produces optimal final values for regular particles, but chaotic
particles may level off too early
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Incorrect classifications after extrapolation
from 2× 105 turns
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Extrapolation continues in direction of fluctuations

Overfitting evident for chaotic particles

24



Immediate decrease in accuracy when
providing data up to high numbers of turns

103 105 107

Number of turns n

−15

−10

−5

0

5

lo
g

1
0
(R
E
M

)

Regular

103 105 107

Number of turns n

Chaotic

Fit data Prediction on fit data Extrapolation

Some regular initial conditions show REM saturation before
108 turns, so the extrapolation leads to a chaotic classification

ARIMA model focuses too much on fluctuations rather than
the trend, resulting in further decrease in accuracy
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Fractions of incorrectly classified initial
conditions
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All cases less than 0.006

High fractions of chaotic classifications as regular due to
levelling off too early and overfitting

ARIMA models effective at predicting regular REM values at
108 turns even if trend is not captured
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Conclusions

Reproduction of benchmark classification accuracy:

FLI performance comparable to REM when using Silverman’s
Rule of Thumb for classifications

ARIMA extrapolations of log10(FLI/n) and log10(REM)

Initial improvement in accuracy observed when extrapolating
from ≈ 105 turns for FLI and REM, but subsequent decrease
due to ARIMA misunderstanding of trends

Extrapolation accuracy never exceeds benchmark accuracy for
FLI or REM

Considerations from this study can be used for future
investigations of extrapolation techniques using more
parameters
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Assessing Accelerator Lattice Quality

Ideal scenario: single-particle
tracking for 108 turns (≈ 10 hours
of LHC runtime)

Determine volume in phase space
where particles have bounded orbits

Realistic LHC lattice models
contain thousands of advanced
elements

Current simulations with realistic
lattices consider up to 106 turns

Survival plot for HL-LHC
lattice at 105 turns
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Modulated Hénon Map

Modulation introduced by varying ω with time, inserting realistic
SPS tune-ripple phenomena

ωx ,y ,n = ωx ,y ,0

(
1 + ε

m∑
k=1

εk cos (Ωkn)

)
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FLI Extrapolation from 105 turns
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FLI Extrapolation from 105 turns
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Very similar extrapolation results
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Fractions of incorrectly classified initial
conditions
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Kernel Density Estimation (KDE)
Statistical method to estimate probability density function of
histogram distribution

fh(x) =
1

n
=

1

nh

n∑
i=1

K

(
x − xi

h

)
,

Manually selected bandwidth h

Assumed kernel function K (typically Gaussian)

Silverman’s Rule of Thumb:

h = 0.9×min(σ,
IQR

1.34
)× n−1/5

Statistical approach to calculate h

Best suited to unimodal Gaussian distributions
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Aims of this Thesis

Reproduction of state-of-the-art results:

Track chaos indicators’ evolution using modulated Hénon map

Establish ground-truth binary classification of regular or
chaotic behavior

Original Contribution

Refine the KDE-based classification algorithm

Compare methods to generate FLI values

Implement ARIMA models to extrapolate chaos indicators’
evolution to 108 turns

Compare accuracy and computational efficiency of tracking
with extrapolation to simple tracking
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Linear Response

Ξn(x) = lim
ϵ→0

yn − xn
ϵ

Two ways to calculate the linear response in single-particle
tracking simulations:

Tangent-map Method (direct analytical computation)

Ghost-particle Method (approximation)

These result in slightly different log10(FLI/n) distributions at 10
8

turns
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log10(FLI/n) distribution comparison

0.0 0.2 0.4

x0

0.0

0.1

0.2

0.3

0.4

y 0

Ghost Particle Method

−10 −8 −6 −4 −2
0.0

0.5

1.0

1.5

D
en

si
ty

Distribution

0.0 0.1 0.2 0.3 0.4

x0

0.0

0.1

0.2

0.3

0.4

y 0

Binary Classification

0.0 0.2 0.4

x0

0.0

0.1

0.2

0.3

0.4

y 0

Tangent Map Method

−10 −8 −6 −4 −2
0.0

2.5

5.0

7.5

10.0

D
en

si
ty

Distribution

0.0 0.1 0.2 0.3 0.4

x0

0.0

0.1

0.2

0.3

0.4

y 0

Binary Classification

−8

−7

−6

−5

−4

−8

−7

−6

−5

−4

Ground Truth log10(FLI/n) at 108 turns, ε = 32.0, µ = 0.5

37



log10(FLI/n) distribution comparison
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log10(FLI/n) distribution comparison
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log10(FLI/n) distribution comparison
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Benchmark Classification Accuracy for FLI
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REM ground truth
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log10(REM) vs log10(FLI/n) at 10
8 turns
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log10(REM) vs log10(FLI/n) at 10
8 turns
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models and reduces
number of data points
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FLI Extrapolation from 106 turns
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FLI Extrapolation from 106 turns
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FLI Extrapolation from 106 turns
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FLI generated with Tangent Map method
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FLI generated with Tangent Map method
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REM parameter scan
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REM extrapolation from 2× 105 turns
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