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Our goal is to solve outstanding computing problems and advance data analysis with quantum computing. 

However, not all use cases will be suitable, and only particular areas may benefit from quantum advantage. Examples:

Chemistry & Pharma Materials 
science

Logistics/finance Machine Learning Scientific computing

○ solving diff. eqns.
○ topological data 
analysis

○ classifying phases
○ generative modelling

HEP

lattice gauge theory (quantum simulation)

properties of nuclear structure 
and hadron interactions

use quantum computers to perform 
lattice simulations, at scale 

inaccessible before

Quantum Scientific 
Machine Learning

(QuaSciML)
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○ complex models can be designed via vector-
matrix multiplication and nonlinear transforms 
to achieve universal function approximation

○ can benefit from kernel-based methods

○ nonlinear models can represent complicated 
correlations and multivariate functions

○ the power of learning often comes from 
high-dimensional latent space representation

Classical machine learning

deep neural network

quantum embedding (feature map) drawing decision boundary in a 
feature space

Quantum machine learning
○ quantum models can be designed by mapping data into quantum states 
and adaptive search for a suitable measurement operator

[M. Schuld, arXiv:2101.11020 (2021)]

quantum neural network (QNN)

○ use parametrized unitaries Sk(x) to 
embed data into quantum states

○ use variational ansatz Uk(k) to 
adjust model and adapt measurement

○minimize the loss L(;x) depending 
on the task, benefitting from 
exponential scaling of the latent 
space
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○ use of unconstrained DNNs requires  big data
and trainable architectures

Scientific machine learning Physics-aware SciML
○we can improve model performance (accuracy and generalization) by 
embedding physics and symmetries at different levels of the workflow

[Wang et al. (DeepMind), Nature 620, 47 (2023)]

problem level data level

architecture level loss level

protein structure 
prediction with AlphaFold 3

[Abramson et al. (DeepMind), 
Nature 630, 493 (2024)]

turbulence modelling with 
PINNs and FNOs
[Li et al. (Caltech), 

arXiv:2010.08895 (2020)]
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Physics-aware SciML

problem level

○we can improve model performance (accuracy and generalization) by embedding physics and symmetries at different 
levels of the workflow [S. Brunton]:

○ add inductive bias to 
restrict models and 
include conservation laws

[Greydanus et al., HNNs, NeurIPS (2019)]

○ combine data-driven 
modelling with use of 
differential equations

data level

architecture level loss level

○make sure that there is an underlying physical 
model when selecting the problem

○ supply scientific data in a 
suitable format and augment it 
with symmetric configurations

○ choose appropriate data 
representation and 
coordinate system

○ embed symmetries 
into the architecture

○ add differential 
constraints for training 
models        PINNs
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○ quantum models (functions) can be encoded with rotation-
based gates and differentiated in the quantum space

○we circuit differentiation to develop a strategy for solving 
differential equations with trainable quantum circuits

quantum neural network (QNN)

[OK et al., Phys. Rev. A 8, 103, 052416 (2021)]

○ one of the most important QNN building blocks is the 
feature map, which often is chosen as a sequence of rotations

○ one advantage is the use of automatic differentiation 
and physics-informed differential constraints (like PINNs)

We can embed circuits and their derivatives into 
loss function for nonlinear data-driven problems

embedded state

quantum model
(latent space function)

product feature 
map (unitary circuit 

for data embedding)

[Mitarai et al., Phys. Rev. A 98, 032309 (2018)]

Quantum PINNs

diff. 
model

autodiff via parameter shift rule
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As an example in fluid dynamics we solved Navier-Stokes equations for a quasi-1D nozzle.

system geometry Navier-Stokes equations
and reference solutions*

DQC solution

○we recovered solutions for density, temperature, 
and velocity by training in domains before and 
after nozzle

[OK, A. Paine, V. Elfving, PRA 8, 103, 052416 (2021)]
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As an example in fluid dynamics we solved Navier-Stokes equations for a quasi-1D nozzle.

system geometry Navier-Stokes equations
and reference solutions*

○we recovered solutions for density, temperature, 
and velocity by training in domains before and 
after nozzle

[OK, A. Paine, V. Elfving, PRA 8, 103, 052416 (2021)]

○we can also learn models with quantum model 
discovery and physics-informed constraints

2D PDE w/ parallel grid evaluation

○ advancing the tools for embedding and mapping 
models, we discovered solvers that have parallel 
grid evaluation – exponential improvement

[N. Heim, A. Gosh, OK, V. Elfving, arXiv:2111.06376] [A. Paine, V. Elfving, OK, arXiv:2308.01827]

function embedding
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Going beyond loss constraints, we show that QML can embed probabilistic models.
[OK, A. Paine, V. Elfving, Phys. Rev. Res. 6, 033291 (2024)]We developed mappings between continuous and discrete 

models for solving Fokker-Planck PDEs for relevant SDEs.

SDE for Ornstein-Uhlenbeck process

QCBM (quantum circuit 
Born machine)

DQGM (differentiable 
quantum generative 

model)

Fokker-Planck equation at stationarity

derivatives?

training and sampling stages if DQGM implicit and explicit models

[S. Kasture, OK, V. Elfving, Phys. Rev. A 108, 042406 (2023)]
[A. Paine, V. Elfving, OK, Adv. Q. Tech. 6, 033291 (2024)]



To modify DQGM bases we also developed quantum Chebyshev toolbox.
[C. Williams, A. Paine, H-Y. Wu, V. Elfving, OK, arXiv:2306.17026 (2023)]

mapping to Chebyshev space

quantum Chebyshev feature map/transform
training probabilistic models with differential constraints

FPE-based loss improves generalization and enables 
sampling with extended registers.
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Recent works have highlighted that QML can be good for analyzing quantum datasets – collections of quantum states. 

[I. Cong, Choi, Lukin (Harvard), Nature Phys. (2019)]

classical data quantum datavs

○ ground state can be classified by QCNNs 
(quantum convolutional neural networks) for 
distinguishing different phases

○ appealed to entanglement but not the basis

○ apparent gap in understanding QML models for 
classical and quantum datasets

We proposed to formalize the use of quantum data and analyze how it introduces an inductive bias

quantum input
from...

[C. Umeano, …, OK, Adv Q. Technol. 2400325 (2024)]

○QCNNs show that we can build models that depend on 
hidden features (parameters of a system Hamiltonian etc)

○ in this case ground state preparation becomes the 
quantum feature map making models physics-aware

[Huang et al. (Google Q.AI), Science 376, 1182 (2022)]
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We consider an operator for the ground state preparation as a function of x and plot typical basis functions showing criticality.  

QCNN for ground state classification associated basis and model
[C. Umeano, …, OK, Adv Q. Technol. 2400325 (2024)]

Formally GSP can be implemented as a sequence of unitaries and allows to analyze the spectrum of the embedding.
[C. Umeano & OK, arXiv:2404.07174 (2024)]

ground state preparation
≈

Trotterized adiabatic evolution ultra-high degeneracy spectrum with inductive bias from quantum data
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While quantum data may sound exotic, we point out that it is ubiquitous if we look at the solutions of quantum diff. equations. 
[C. Williams, S. Scali, A. Gentile, D. Berger, OK,arXiv:2411.14259 (2024)]

QuaSciML workflow for predictions

I believe physics-aware QML will be a vital part of feature extraction for PDE solvers.

Navier-Stokes eqns. with turbulent and laminar flow

2 flow classes (quantum data)

generalization and 
confusion matrix

○ customized QML architectures for analyzing 
correlations can lead to high performance

○ choice of basis (quantum representation) is 
very important for successful readout
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Can we have a provable advantage from quantum machine learning? Yes, if we shown the QML allows learning known protocols 
for hard problems in BQP complexity class.  

Simon’s problem: learn to 
separate 1:1 or 2:1 functions 

geometric quantum machine learning (GQML): 
embed symmetries of you data into a model

1) invariant initial state 2) equivariant embedding

3) equivariant ansatz 4) invariant measurement

Once we introduce equivariant 
loading of Boolean functions, we can 

learn the Simon’s algorithm that is 
known to be in BQPA complexity class.

[C. Umeano, V. Elfving, OK, arXiv:2402.03871 (2024)]

[JJ Meyer et al., PRX Quantum 
4, 010328 (2023)]

invariance and 
equivariance

In case of Boolean functions as 
data the symmetries correspond 
to permutations and bitflips of 
arguments – function type remains 
the same for any x.

equivariant feature map
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We observe that the GQML-based workflow fully represents Simon’s algorithm, apart from the classical post-processing.

unsupervised detection from sampling

We observe that quantum machine learning is capable of learning hard protocols where advantage 
comes from superior sampling complexity, complex input (probability distribution), and post-

processing. I expect more examples to emerge.

[C. Umeano, V. Elfving, OK, arXiv:2402.03871 (2024)]

Visualization: what do detect as features of the function-based dataset?

computational directed graph visualization of 1:1 or 2:1 functions 
and clear separation based on topological properties 
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How do we find other examples where symmetry-aware QML is used to discover exponentially-improved algorithms?
[C. Umeano, S. Scali, OK, arXiv:2409.01496 (2024)]

workflow of quantum barcode classification task with 
learners trying to spot a similarity between samples

We test the ability of classical neural network architectures and QML-based approaches to 
learn the distribution labels with exponential improvements in generalization.

Quantum embedding: graph states (or phase or REW states)

Symmetries: global correlations (circuit that remaps states)

Input data correspond to samples from distributions of 2 types

Quantum symmetry representations (conserved operators)

bitstring remappingregister exchange

correlated vs uncorrelated pairs
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Following the generic rules of symmetry-aware processing, we developed and followed 2 different GQML workflows: 
variational basis adaption and measurement selection. [C. Umeano, S. Scali, OK, arXiv:2409.01496 (2024)]

basis adaptation circuit for spotting correlations

MSE-based training 

Pool of symmetric operators:

local generators global generators

measurement selection circuit for spotting correlations

Hypotheses:
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We proceed to test QML-based workflows  on created datasets of correlated/uncorrelated pairs, and benchmark them against 
classical deep neural networks (DNN) and convolutional neural networks (CNN) as a function of: 1) training set; 2) system size.

QMLM-based offers 100% test accuracy when trained 
on few samples, while DNN/CNN do not generalize 

excellent accuracy and generalization is observed at 
increased system size with 10308 possible states

Basis adaptation QMLU does not perform well, but measurement selection QMLM shows excellent generalization.

To explain this performance we shall look at the problem of forrelation by Aaronson & Ambainis
[arXiv:1411.5729 (2014) + Raz & Tal] that shows the maximal separation between BQP and PH.

vs quantum and classical query complexity for distinguishing random and Fourier-related pairs 

correlated pairs overlap-based forrelation test optimal hypothesis
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All good, but will this actually work in practice? Can we learn a sharp decision boundary on real hardware?
[C. Umeano, S. Scali, OK, arXiv:2409.01496 (2024)]

IBM Eagle QPU (Kyiv) with 127 qubits: tested full QMLM
approach on 40 qubits 

measured observables for 2 classes and test accuracy 
from hardware predictions

By targeting the barcode classification problem motivated by forrelation we have shown that 
QML can use symmetry-aware workflow to find optimal decision boundary with just few 

samples, and implemented on 40-qubit superconducting QPU.

○GQML-based solution remains robust even in the 
presence of noise

○ similar approaches can be applied for cases of similarity 
testing where correlations are important



“ Success of quantum scientific machine 
learning largely depends on designing models 
that are physics-aware and obey relevant 
symmetries by construction, offering superior 
generalization. Inductive bias and powerful 
embedding can bring QuaSciML to next level.
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