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QUANTUM APPLICATIONS

Our goal is to solve outstanding computing problems and advance data analysis with quantum computing.

However, not all use cases will be suitable, and only particular areas may benefit from quantum advantage. Examples:

Chemistry & Pharma Materials

Nitrogenase Fe-Mo cofactor
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lattice gauge theory (quqnum simulation)

properties of nuclear structure
and hadron interactions

use quantum computers to perform
lattice simulations, at scale
inaccessible before

Scientific computing
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Machine Learning

i

Quantum Scientific
Machine Learning
(QuaSciML)
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Classical machine learning Quantum machine learning
o complex models can be designed via vector- o quantum models can be designed by mapping data into quantum states
matrix multiplication and nonlinear transforms and adaptive search for a suitable measurement operator
to achieve universal function approximation
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deep nevural network

o use parametrized unitaries S, (x) to
embed data into quantum states

o use variational ansatz U, (6,) to

o nonlinear models can represent complicated adjust model and adapt measurement

correlations and multivariate functions
o minimize the loss L(6;x) depending

on the task, benefitting from
exponential scaling of the latent
space g

o the power of learning often comes from
high-dimensional latent space representation

o can benefit from kernel-based methods

quantum neural network (QNN)
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Scientific machine learning

o use of unconstrained DNNs requires big data
and trainable architectures

Al for science

Observations Hypotheses

L Experiments

. Rare event selection
Weather forecasting are event Se'ectio

in particle collisions

Battery design . )
optimization Language modelling for
biomedical sequences

Magnetic control of

nuclear fusion reactors High-throughput

virtual screening
Planning chemical
synthesis pathway

Navigation in the
Neural solvers of hypothesis space
differential equations

Super-resolution 3D

Hydropower station live-cell imaging

location planning
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Synthetic electronic s n Symbolic regression
health record generation

[Wang et al. (DeepMind), Nature 620, 47 (2023)]

> Sheffield PHYSICS-AWARE LEARNING

Physics-aware SciML

o we can improve model performance (accuracy and generalization) by
embedding physics and symmetries at different levels of the workflow

True velocity y
| '

Predicted velocity y

TR}
I

protein structure turbulence modelling with
prediction with AlphaFold 3 PINNs and FNOs
[Abramson et al. (DeepMind), [Li et al. (Caltech),
Nature 630, 493 (2024)] arXiv:2010.08895 (2020)]
problem level datalevel
architecture level loss level
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Physics-aware SciML

o we can improve model performance (accuracy and generalization) by embedding physics and symmetries at different
levels of the workflow [S. Brunton]:

problem level datalevel
o make sure that there is an underlying physical o supply scientific datain a
model when selecting the problem suitable format and augment it

with symmetric configurations

o choose appropriate data
representation and
coordinate system

loss level

o add inductive bias to Ground truth Baseline NN Hamiltonian NN o combine data-driven
modelling with use of
differential equations

o add differential
constraints for training

[Greydanus et al., HNNs, Neur|PS (2019)] models ®» PINNs

restrict models and
include conservation laws

o embed symmetries
into the architecture
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QUG ntfum PINNs o one of the most important QNN building blocks is the

feature map, which often is chosen as a sequence of rotations

[fr0()) = UsU ,(x)|D)

embedded state
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o quantum models (functions) can be encoded with rotation-
based gates and differentiated in the quantum space
[Mitaraiet al., Phys. Rev. A 98, 032309 (2018)]

1) = {fop(XICI f,p(x))

quantum model
(latent space function)

o we circuit differentiation to develop a strategy for solving
differential equations with trainable quantum circuits

[OK et al., Phys. Rev. A 8,103, 052416 (2021)]

autodiff via parameter shift rule

o 1 A
df(x)/dx =3 Z (S 16 ICIf, 10(2))

J

~ g0 OIC 7 16(0)

product feature
map (unitary circuit
for data embedding)

nin(.Ee [d.f, f,x])

quantum feature variational quantum  measure f(Xi)
map circuit circuit =2 0,{C (x)

X

quantum neural network (QNN)

o one advantage is the use of automatic differentiation
and physics-informed differential constraints (like PINNs)

We can embed circuits and their derivatives into
loss function for nonlingar data-driven problems 6
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As an example in fluid dynamics we solved Navier-Stokes equations for a quasi-1D nozzle.
[OK, A. Paine, V. Elfving, PRA 8,103, 052416/(2021)]

convergent-divergent nozzle g oV ,_f)('l()g_ A) V(_c)p
= —()— — OV _— / —_—.
Pox ~f ax ax

subsonic supersonic

flow ! )T(@ N V(")(l()g A))

0x dx
1 (OT T dp
-_—+t -,
y\dx padx
Navier-Stokes equations
and reference solutions*

o we recovered solutions for density, temperature,
and velocity by training in domains before and
after nozzle

-2 fr(x)

DQC solution

7
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As an example in fluid dynamics we solved Navier-Stokes equations for a quasi-1D nozzle.
[OK, A. Paine, V. Elfving PRA 8,103, 052416/(2021)]

convergent-divergent nozzle e I, (]0(, A) ()P

g(x;)]7)

}kjl) L}

Navier-Stokes equations #

. * '.
and reference solutions function embeddinc

o we recovered solutions for density, temperature,
and velocity by training in domains before and
after nozzle

subsonic supersonic

O(logA ))
— 4V

ox

av 1 ('OT T ()p)
v =2,

dx y\ox pox

o we can also learn models with quantum model
discovery and physics-informed constraints

o advancing the tools for embedding and mapping
models, we discovered solvers that have parallel »
grid evaluation - exponential improvement

2D PDE w/ parallel grid evaluation
[A. Paine, V. Elfving, OK, arXiv:2308.01827]

8

[N. Heim, A. Gosh, OK, V. Elfving, arXiv:2111.06376]
We continue expanding the toolbox for solving differential equations in aldata-driven way
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PHYSICS-INFORMED: PROBABILISTIC

Going beyond loss constraints, we show that QML can embed probabilistic models.
[OK, A. Paine, V. Elfving, Phys. Rev. Res. 6, 033291 (2024)]

We developed mappings between continuous and discrete ;
[S. Kasture, OK, V. Elfving, Phys. Rev. A 108, 042406/(2023)]

models for solving Fokker-Planck PDEs for relevant SDEs.

dX; = —v(Xy — p)dt + odW;

SDE for Ornstein-Uhlenbeck process
. g

vp(z,t.) + vz — ﬂ)]—lp(l te) + %dd

Folkker-Planck equation at stationarity

e derivatives? P (x) = tr{psz (f”ﬂll{f;“‘ Po.¢(x) = tr{|x){ am r;ml\g,

training sampling

po() = |(x|ig)|”

QCBM (quantum circuit
Born machine)

$

DQGM (differentiable
quantum generative
model)

bit basis model

latent space model

training and sampling stages if DQGM

[A. Paine, V. Elfving, OK, Adv. Q. Tech. 6,033291(2024)]

input data
samples {Xj} PDF est. P(x) PDF p(x) diff. constraints

(SDE, Fokker
Planck egs.)
xap(x)/ax =

, ap + 92p/ox2

sample-based distribution-based loss and gradients (MSE)

loss (MMD etc) =
circuit training ?

QCBM (implicit) QCBM (explicit) DQGM (explicit)

quantum classical (CPU/GPU) or quantum

sampling

implicit and explicit models

QCBM
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FPE-based loss improves generalization and enables To modify DQGM bases we also developed quantum Chebyshev toolbox.
sampling with extended registers. [C. Williams, A. Paine, H-Y. Wu, V. Elfving, OK, arXivi2306.17026 (2023)]

—trained p'(x) Q
— target p'(x) 6-qubit computational space j| orthonormal
trained p'(x) sampler ‘ i Chebyshev

target p''(x) Fioob-- 1=|-H—H-| basis
j=0

o
(=]
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w

f —trained p(x)
target p(x)
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raining probabilistic models with differential constraints Gquartirh Chabyshev featUre MBI TERE NN
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CLASSICAL vs QUANTUM DATA

Recent works have highlighted that QML can be good for analyzing quantum datasets - collections of quantum states.

TS “ [l. Cong, Choi, Lukin (Harvard), Nature Phys. (2019)]
‘ | [Huang et al. (Google Q.Al), Science 376, 1182 (2022)]

: o ground state can be classified by QCNNs
| 3 (quantum convolutional neural networks) for
distinguishing different phases
5 | o appeadled to entanglement but not the basis
I - o o apparent gap in understanding QML models for

quantum data classical and quantum datasets

classical data VS

We proposed to formalize the use of quantum data and analyze how it introduces aninductive bias

mapping hidden feature x quantum convolutional neural network [C. Umeano, ..., OK, Adv Q. Technol. 2400325 (2024)]

[ —— ]

o QCNNs show that we can build models that depend on
hidden features (parameters of a system Hamiltonian etc)

: RS l ' 2l o in this case ground state preparation becomes the

x-dependent physical input states convolution pooling qUGn+Um feufure map moklng mOdels thSICS-GWQ =
process {p(x)} layer layer 11
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PHYSICS-AWARE: QUANTUM DATA

We consider an operator for the ground state preparation as a function of x and plot typical basis functions showing criticality.

mapping hidden feature x quantum convolutional neural network classification: phase recognition

—
-

QCNN basis (c)
_ (o) e 1
S

. . : . class B
c . n - 0 class A

measure

O

A 9-3-1QCNN model

N=land __—
3 pooling

o o o
o o o
NWJ?

o
o
=

basis functions |¢J’|2

QCNN for ground state classification associated basis and model

[C. Umeano, ..., OK, Adv Q. Technol. 2400325 (2024)]

Formally GSP can be implemented as a sequence of unitaries and allows to analyze the spectrum of the embedding.

[C. Umeano & OK, arXiv:2404.07174 (2024
o (@) = Uy (@)lvo) il
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Trotterized adiabatic evolution
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ultra-high degeneracy spectrum with inductive bias from quantum data

frequencies
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While quantum data may sound exotic, we point out that it is ubiquitous if we look at the solutions of quantum diff. equations.
[C. Williams, S. Scali, A. Gentile, D. Berger, OK,arXiv:2411.14259 (2024)]

quantum g
PDE
solver

i
5 ]
H
p H laminar
H
H
: _
H y
H .
H

phy5|cul system ~ quantum solutions
(mechanics, CFD etc) (quantum data)

v

2]
I=1
True Label

turbulent

Accuracy
~
o

(=1
o

laminar turbulent
Predicted Label

T gdeneralization and
Number of samples confusion matrix

u
o

‘/ operational
O turbine
A

faulty
. t | network . . :
X iubine quantum neuralnetwarks o customized QML architectures for analyzing

correlations can lead to high performance

predictions double- ; .
(classification, QNN ; o choice of basis (quantum representation) is

regression etc)

very important for successful readout

QuaSciML workflow for predictions 2 flow classes (quantum data)

| believe physics-aware QML will be a vital part of feature exiraction for PDE solvers. 13
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SYMMETRY-AWARE: SIMON'’s PROBLEM

Can we have a provable advantage from quantum machine learning? Yes, if we shown the QML allows learning known protocols
for hard problems in BQP complexity class. [C. Umeano, V. Elfving, OK, arXiv:2402.03871(2024)]

classical postprocessing

o, ] (a)  functionspace geometric QML “2%  equivariant
Simon's algorithm | tronsformation
a (O
> s 11
- ple) ) Us, (Y p
; 21 ' W » | ... | P model
: 0
boundary 2:1 : \ A o
JounaEn ) 5. (O 21 invariance and
distribution space measurement space equivaricmce
geometric quantum machine learning (GQML): [JJ Meyer et al., PRX Quantum
embed symmetries of you data into a model 4,010328 (2023)]

1) invariant initial state

Slmonsproblem learn to AT 2) equivariant embedding [fQ/MES ) IEI MU ENIN

separate 1:1or 2:1functions

3) equivariant ansatz [[I)NMIERY 4)invariant measurement (el

. (b) equivariant feature map Simon's circuit
In case of Boolean functions as o 101/ : ‘ant
data the symmetries correspond H H H H .nce VooarOQuCe eq.Ul\/eron
to permutations and bitflips of H H H H loading of Boolean functions, we can
arguments - function type remains learn the Simon'’s algorithm that is
the same for any x. known to'belin BQPA complexity class.
@

14

equwarlanf feature map
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We observe that the GQML-based workflow fully represents Simon’s algorithm, apart from the classical post-processing.
[C. Umeano, V. Elfving, OK, arXiv;2402.:03871(2024)]

Visualization: what do detect as features of the function-based dataset?

2:1functions

.
"%

\ o
110110 e [1111M10) / KLl b nffhy
20 40 60

feature O momns. g 6010m7

40

| 201_ b
. \ vertex number
% onoiofy#10000T0) |

performance

—= frainacc.

—= testacc. A P,

10 20 30 40 50 60
function instances

107 10
number of shots

unsupervised detection from sampling computational directed graph visualization of 1:1 or 2:1 functions
and clear separation based on topological properties

We observe that quantum machine learning is capable of learning hard profocols where advantage
comes from superior sampling complexity, complex input (probability distribution), and post-

orocessing. | expect more examples to emerge. 15
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How do we find other examples where symmetry-aware QML is used to discover exponentially-improved algorithms?
[C. Umeano, S. Scali, OK, arXiv:2409.01496(2024)]

classifier

Input data correspond to samples from distributions of 2 types

X, ~ Pylx

classical _ o : correlated vs uncorrelated pairs
» learner 5

Jﬁ" Quantum embedding: graph states (or phqse or REW states)

‘-i’

? ;"’fa-’ﬁ
quan’rum
learner

Quantum symmetry representations (conserved operators)

[1._ SWAP; .,

register exchange bitstring remapping

workflow of quantum barcode classification task with
learners trying to spot a similarity between samples

We test the ability of classical neural network architectures and QML ~based approaches fo
learn the distribution labels with exponentialimmprovements in'generalization. 16
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Following the generic rules of symmetry-aware processing, we developed and followed 2 different GQML workflows:

variational basis adaption and measurement selection. [C. Umeano, S. Scali, OK, arXiv:2409.01496 (2024)]
Pool of symmetric operators:  DNRIDNRO.CIRDWD 3 (ISP VAV 8 {X@’I,Z@z", [T, SWAP; ..., H®™", ...

local generators global generators

Rv(61) Rxx(02) Rvy(63) SWAP
basis adaptation circuit for spotting correlations

Hypotheses:
ho(xm) = ol U () W' (O)OW (O) Uy (x)lth0)

M

N : 2 -
MSE-based training i) SRl CLVIC Lol iud ) LASSO : min % (G - (xp) — ym-)
a 2

m=1
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We proceed to test QML-based workflows on created datasets of correlated/uncorrelated pairs, and benchmark them against
classical deep neural networks (DNN) and convolutional neural networks (CNN) as a function of: 1) training set; 2) system size.
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Basis adaptation QML does not perform well, but measurement selection QML,, shows excellent generalization.
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# of qubits # of qubits

N
8] .
# of samples # of samples

QML,,-based offers 100% test accuracy when trained excellent accuracy and generalization is observed at

on few samples, while DNN/CNN do not generalize increased system size with 10398 possible states

To explain this performance we shall look at the problem of forrelation by Aaronson & Ambainis
[arXiv:1411.5729 (2014) + Raz & Tal] that shows the maximal separation between BQP and PH.

O( 1) Vs Q( \/ quantum and classical query complexity for distinguishing random and Fourier-related pairs

= Kb [ ) = KOLE™" T (x) ™ Uy (o) " 0) [ (™) = F2" - ([T}, SWAP .,

correlated pairs overlap-based forrelation test optimal hypothesis

18
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All good, but will this actually work in practice? Can we learn a sharp decision boundary on real hardware?
[C. Umeano, S. Scali, OK, arXiv:2409.01496(2024)]

\\\/I

58 59 60 61 62 63 64 13 66 67

77 78 79 -e 8 82 a 84 85 8

109 10 m

measured observables for 2 classes and test accuracy
from hardware predictions

IBM Eagle QPU (Kyiv) with 127 qubits: tested full ML,
approach on 40 qubits

o GQML-based solution remains robust even in the o similar approaches can be applied for cases of similarity
presence of noise testing where correlations are important

By targeting the barcode classification problem motivated by forrelation we have shown that
QML can use symmetry-aware workflow fo find optimal decision boundary with just few

samples, and implemented on 40-qubit superconducting QPU. i
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66 Success of quantum scientific machine
learning largely depends on designing models
that are physics-aware and obey relevant
symmetries by construction, offering superior
generalization. Inductive bias and powerful
embedding can bring QuaSciML to next level.

20
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