Quantum network technology

The second life of rare-earth crystals

Wolfgang Tittel

University of Geneva

Constructor Institute of Technology & Constructor University

Elements of a quantum network

- Interacting centers for matter-based qubits
- Individual optical centers for single and entangled photons
- Large ensembles for high-capacity, feed-forwardcontrolled optical quantum memories
- For compatibility and scalability, these components should be based on the same type of defect and be on-chip integrable using standard photonics technology.

Outline

- Rare-earth ion-doped crystals
- · Single photons based on individual rareearth ions
- Optical quantum memory using ensembles of rare-earth ions
- Outlook and conclusion \bullet

Rare-earth ion-doped crystals

Saglamyurek, WT *et al*., Nature 469, 512-515 (2011).

Saglamyurek, WT *et al*., Nature Phot. 9, 83 (2015).

Rare-earth crystals: a brief introduction

Simplified level structure of Tm³⁺-doped crystals

1) Transitions (zero-phonon lines) in the visible and near infrared -> quantum communication

2) $\Gamma_{\text{inhom}} \approx 100 \text{ MHz} - 500 \text{ GHz}$ *-> broadband quantum memory*

3) Excited states with very long lifetimes (ms)

-> *difficult to observe single-photon emissions*

4) At T< 2 K: $\Gamma_{\rm hom}^{\rm~opt}$ \approx 50 Hz – 100 kHz -> T $_{\rm 2}$ = 4 ms *-> high-capacity and long-lived quantum memory*

5) At T< 2 K: ground states with long T $_{\rm 1}$ (d) and long T $_{\rm 2}$ (h) *-> long-lived quantum memory and qubits*

6) Electric dipole-dipole interaction between neighboring ions *-> quantum gates*

Promising for optical quantum memory and QIP. But not for

How to create a single photon? Spontaneous emission from a single emitter

- The long optical lifetimes in rareearth ions result in very small decay rates
- Photons will be emitted into random directions

Single rare-earth ion

eating (and weak coupling the weak coupling of the weak coupling to the set of the set of the set of the set o rgre **Creating (and No. 1896)** observing) single regime **photons**

single-p hoton sources $n \vee$. -single-photon sources $\mu_{\rm eg}$. The single-photon sources sources $\mu_{\rm eg}$. $-\hbar\omega$ For $\kappa >> g >> \gamma_0$ (weak coupling regime): In the weight reduces the weight reduces \mathcal{L} , it is defined as given output for a given output \mathcal{L}

$$
\boxed{\gamma' = F_P \gamma_0}
$$

$$
\boxed{F_P = \frac{3}{4\pi^2} \Big(\frac{\lambda}{n}\Big)^3 \frac{Q}{V} \, \Big|\frac{E(\mathbf{r})}{E_{\max}}\Big|^2\text{ Purcell}}
$$

q ua literatura e a literatura e a
Español de volumento de la contrada e a literatura e a literatura e a literatura e a literatura e a literatura

$$
\left.\frac{\mathbf{r}_{j}}{2}\right\vert^{\ast}
$$
 Purcell factor

for atom in max # for atom in max

field region

 γ_{0} : vacuum emission rate

i n the weak coupling to the weak coupling of the weak coupling to the weak coupling of the weak coupling of t
The weak coupling to the weak coupling of the weak coupling of the weak coupling of the weak coupling of the w

The Pu rcell effect:

Quality factor Community Factor Activities (Mode volume olume \mathcal{M} use \mathcal{M} and \mathcal{M} and \mathcal{M} of \mathcal{M} or \mathcal{M} or \mathcal{M} or \mathcal{M} or \mathcal{M} . The set of \mathcal{M} or \mathcal{M} or \mathcal{M} or \mathcal{M} or \mathcal{M} or \mathcal{M} or \mathcal{M} . The set of $\mathcal{M$

$$
V = \int d^3 \mathbf{r} \frac{\epsilon(\mathbf{r}) |E(\mathbf{r})|^2}{max\{\epsilon(\mathbf{r}) |E(\mathbf{r})|^2\}}
$$

Needed: cavity with small V and large Q

The Purcell effect: atom-light interaction in the weak coupling regime

$$
g = \frac{\mu_{eg}}{\hbar} \sqrt{\frac{\hbar \omega}{2\varepsilon_M V_{\text{mode}}}}
$$
 (a)

$$
F_P = \frac{3}{4\pi^2} \Big(\frac{\lambda}{n}\Big)^3 \frac{Q}{V}
$$
 Purcell factor

Nano-photonic crystal cavities

$$
Q = 1.4 \times 10^{7}, V = 0.39 (\lambda/n)^{3} \rightarrow {}^{5}
$$
\n

Fundamental mode	y ₄
0000000000000000000000000000	
(a)	

Deotare et al. *Appl. Phys. Lett.* 94, 121106 (2009)

Single photons from individual rare-earth ions

Purcell-entangled light-matter interaction has enabled the observation of true single photons from individual rare-earth ions coupled to nanocavities.

Homogeneous approach

Faraon group: photonic crystal nano-cavity milled out of Nd:YVO $_4$ (PRL 2018)

Heterogeneous approach

Design

A "bus" waveguide (with Bragg reflector): couples to 2 nanobeam cavities

Joint work with Gröblacher group

A single-photon sources based on Er:LiNbO₃ $10 \mu m$ Design and **Simulations** Er:LiNbO₃ \Box Optical characterization in air, 0.12 and after transfer on Patterning: 0.10 Er:LiNbO $_3$, at T=293K and T=4K E-beam lithography Si (250 nm) 0.08 Spectra and quality factor $\frac{1}{2}$ 0.06 0.04 Si (0.5 mm) $SiO₂$ (3 µm) -411A-13-06-01 trace 3.txt 1533.5 1533.6 1533.7 1533.8 1533.9 Patter transfer: Reactive ion etching Inspection: Optical microscope & **SEM** Under-cutting: Hydrofluoric acid 1990 F. (1990) - Andrew Company Andrew Company
1990 - Andrew Company Adventure Company The Str

W 41238 PH 2000 W 8.29 pm 5.3 mm 25 000 x 11.0

SCLER
Medicine State

Cavity characterization

Purcell-enhanced emission

- Si cavity on 0.005% Er:LiNbO₃
- T approx. 50 mK
- Observation of isolated photoluminescence lines off line-center
- 13-fold(144-fold) reduction of decay constant from 1.8 ms to 134 μ s (12.5 μ s)
- T_1 <10 μ sec and radiatively limited emission (T $_1$ =T $_2$ /2) seem possible
	- -> Fourier-limited photons

Joint work with Gröblacher group, TU Delft

Purcell-enhanced emission

- Measurement of auto-correlation coefficient shows non-classical (single-photon) nature of emissions and confirms interaction with individual erbium ions
	- -> single-photon source and possibility for qubit read-out

 $q^2(0) = 0.190 + -0.02$

Joint work with Gröblacher group, TU Delft

Purcell-enhanced emission

- Demonstration of Stark tunability of single ion
- Single-photon character not affected
- Feedback mechanism to counter spectral diffusion
	- -> indistinguishable single photons
	- -> distant spin-spin entanglement
	- -> heralded entangled photon pairs

 Δ v=($\rm \vec{d}_e$ - \vec{d}_g) $\vec{\sf E}$ / $\sf h$

Joint work with Gröblacher group, TU Delft Y. Yu et al., Phys. Rev. Lett. 131, 170801 (2023)

How to store photonic quantum states in a multiplexed manner? Use large ensembles of atoms

 $|\psi'\rangle = 1|\psi\rangle$

Room-temperature vapor

Laser-cooled atoms

Rare-earth crystals

How to store photonic quantum states in a multiplexed manner? Use large ensembles of atoms

$$
|\psi'\rangle=1|\psi\rangle
$$

Photon echo quantum memory (AFC)

1. Preparation of an atomic frequency comb

2. Absorption of a photon -> fast dephasing

$$
\left| y \right\rangle = \frac{1}{\sqrt{N}}{\sum\limits_{j=1}^N}{c_i}{e^{-i2\rho D_jt}}e^{ikz_j}\left|{g_1}...{\left|{e_j}...{\left|g_N}\right\rangle}\right.\right.
$$

Experiments: *Geneva, Lund, Paris, Calgary, Delft, Barcelona, Hefei, Caltech*

3. Rephasing at t*=1/v_{comb}: 2* $\pi\Delta_{\rm j}$ *t=2* π *(nv_{comb})/v_{comb} = n 2* π

-> Re-emission of photonic qubits with unity efficiency* and fidelity -> Possibility tu use control pulses for on-demand read-out (if needed)

* requires phase matching or cavity

Needed: inhomogeneously broadened transition, long-lived auxiliary state, narrow homogeneous linewidth

M. Afzelius *et al.* PRA 79, 052329 (2009)

Towards efficient quantum memory

The efficiency of the AFC quantum memory is limited by its optical depth

$$
\eta = \left(\frac{d_1}{F}\right)^2 e^{-d_1/F} e^{-d_0} e^{-7/F^2}
$$

Using an impedance-matched cavity allows in principle to increase the efficiency to 1 despite small single-pass absorption $e^{‐\alpha l}$

Condition: $R_1 = e^{-2\alpha l} R_2$ with $R_2 = 1$

M. Afzelius and C. Simon, Phys. Rev. A 82, 022310 (2010)

Towards efficient quantum memory

Reflection-coated $Tm:Y_3Al_5O_{12}$ (YAG) crystal

 ${}^{3}H_{6}$ $T_1 = 1.1$ ms 793.378nm 3F_4 ${}^{3}H_{4}$

> Cavity reflection spectrum (within Tm resonance)

Cavity transmission spectrum (outside Tm resonance)

J. Davidson, WT et al., PRA 101, 042333 (2020)

Almost impedance-matched!

Towards efficient quantum memory

 $| \psi>=\alpha |e>+ \beta e^{i\phi} |$

Results

AFC created using the non-coated part of the crystal. η ~1%

AFC-based storage of attenuated laser pulses (μ =0.7) using coated part of crystal

J. Davidson, WT et al., PRA 101, 042333 (2020)

More Results

Measurement of **non-classical crosscorrelations** with photon pairs before and after storage: $\rm{g^{(2)}}_{before}$ =61.8 ±3.8, $\rm{g^{(2)}}_{after}$ = 9.1 ±1.2

Quantum state tomography of time-bin qubits encoded into heralded single photons

Quantum process tomography of time- $\begin{pmatrix} & \phantom{\$ pulses $(\mu=0.7)$

J. Davidson, WT et al., PRA 101, 042333 (2020)

Towards fully quantum-enabled networks based on an integrated platform

- **Single (and soon? entangled) photons** based on Purcell-enhanced emission from single rareearth ions
- Compatible **quantum memories** based on large ensembles of rare-earth ions
- **(Quantum computing nodes** using interacting rare-earth ions coupled to nano-cavities for readout)
- Exploit maturity of $Si/SiN/LiNbO₃$ photonics (foundries) to create **compatible, scalable** and **integrated quantum network technology**
- More **fundamental research into materials, protocols**, **applications**,…

Thank you!

Tittel lab (UNIGE) Patrick Remy Erell Laot Javier Carrasco Deeksha Gupta Archi Gupta Akshay Karyath Luozhen Li

Tittel lab (TUD)

Dorian Oser Sara Marzban J. Davidson

Tittel lab (UofC) Daniel Oblak P. Levebfre

Gröblacher lab (TU Delft)

Simon Gröblacher Rob Stockill Yong Yu Gaia Da Prato Emanuele Urbinati

OBO KAVLI INSTITUTE Nanoscience Delft

Quantum repeater - how to mitigate loss

Goal: Overcome the exponential scaling of photon transmission over a long (lossy) quantum channel

Note: multiplexing does not lead to better scaling

Solution

- 1) Break long link into shorter *elementary links.*
- 2) Distribute *heralded and long-lived entanglement* across each elementary link.
- 3) Multiplex distribution (any degree of freedom) to make it efficient.
- 4) Mode mapping based on feed-forward info allows connecting "good" links using Bell-state measurements.

No need for photons to travel *in one go* over the entire link.

Exponential scaling \circ *Same scaling* O \circ O

Better scaling

N Sinclair, WT *et al*., Phys. Rev. Lett. 113, 053603 (2014)

Quantum memory requirements

- 1) Large storage efficiency
- 2) Sufficient storage time
- 3) Fidelity ->1
- 4) Feed-forward mode mapping
- 5) High multiplexing capacity
- 6) Wavelength of operation
- 7) Bandwidth per qubit
- 8) Integrability

State-of-the-art

- **Comparing results taken under different conditions**… But while not all experiments demonstrate quantum nature, all used a quantum protocol
- **2-level AFC**: not yet better than fiber, but close. Materials with sufficient $\mathsf{T_2}^{\mathsf{opt}}$ for τ = 1ms exist. Need to reduce technical noise and add cavities.
- **AFC spin-storage**: scaling already better than fiber, but efficiencies still small. Materials with sufficient $\mathsf{T}_2^{\mathsf{spin}}$ exist. Need to improve efficiency of π pulses and noise and to add cavities.
- **Three use cases (**assuming sufficient multiplexing)
	- Quantum repeaters for fiber networks
	- Quantum repeaters for satellite networks
	- Physical qubit transport

