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Elements of a

quantum network -,

Interacting centers for matter-based qubits

Individual optical centers for single and entangled
photons

Large ensembles for high-capacity, feed-forward-
controlled optical quantum memories

For compatibility and scalability, these components
should be based on the same type of defect and be
on-chip integrable using standard photonics
technology.




Outline

Rare-earth ion-doped crystals

Single photons based on individual rare-
earth ions

Optical quantum memory using
ensembles of rare-earth ions

Outlook and conclusion
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Rare-earth ion-doped crystals
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Commercial solid-state
lasers

Quantum technology
(memories, single emitters)
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Energy of electronic levels [x103 cm]

Saglamyurek, WT et al., Nature 469, 512-515 (2011).
Saglamyurek, WT et al., Nature Phot. 9, 83 (2015).

G.H. Dieke, Spectra and Energy Levels of Rare Earth lons in Crystals, Wiley Interscience, New York, 1968.



Rare-earth

crystals: a brief

introduction
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levels splitting (10 MHz
(103GHz) —1GHz)

Simplified level structure
of Tm3*-doped crystals

opt. depth

Frequency

defects and strain
-> inhomogeneous broadening

1) Transitions (zero-phonon lines) in the visible and near infrared
-> quantum communication

2)Tihom = 100 MHz - 500 GHz
-> broadband quantum memory

3) Excited states with very long lifetimes (ms)

-> difficult to observe single-photon emissions
4) At T<2 K: T, Pt~ 50 Hz - 100 kHz -> T, =4 ms
-> high-capacity and long-lived quantum memory

5) At T< 2 K: ground states with long T, (d) and long T, (h)
-> long-lived quantum memory and qubits

6) Electric dipole-dipole interaction between neighboring ions
->quantum gates

Promising for optical quantum memory and QIP. But not for

single-photon emitters.




How to create a single
photon? Spontaneous
emission from a single
emitter

- The long optical lifetimes in rare-
earth ions result in very small decay
rates

- Photons will be emitted into random
directions

Single rare-earth ion




Creating (and
observing) single
photons

For k >> g >>y, (weak coupling regime):

, Purcell factor

Y: Vacuum emission rate # for atom in max
field region

Quality factor Mode volume
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Needed: cavity with smallV
and large Q



The Purcell effect:
atom-light interaction
in the weak coupling
regime
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Nano-photonic crystal cavities
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Deotare et al. Appl. Phys. Lett. 94,121106 (2009)



Single photons from individual rare-earth ions

. . . Heterogeneous approach
* Purcell-entangled light-matter interaction has . A

. : D,
enabled the observation of true single photons from @) M
individual rare-earth ions coupled to nanocavities. b /
F»=650
mpson group: Silicon photonic crystal (nano) cavity
Homogeneous approach stamped on top of Er:YSO (PRL 2018)
()

EYLLELEELE
Faraon group: photonic crystal nano-cavity
milled out of Nd:YVO, (PRL 2018)

(b) .




A single-photon source
based on Er:LiNbO,

V4

Optical characterization in air,
and after transfer on
Er:LINbO,, at T=293K and T=4K

Spectra and quality factor

‘ Patter transfer:

Reactive ion etching
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Inspection:

Optical microscope &
SEM
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Design
g A “bus” waveguide (with Bragg reflector):
couples to 2 nanobeam cavities

Joint work with Groblacher group



A single-photon sources
based on Er:LiNbO,

V4

Optical characterization in air,
and after transfer on
Er:LINbO,, at T=293K and T=4K
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Cavity
characterization
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Purcell-enhanced emission

- Sicavity on 0.005% Er:LiNbO,
- T approx. 50 mK
- Observation of isolated photoluminescence lines off line-center
- 13-fold(144-fold) reduction of decay constant from 1.8 ms to 134 us (12.5 us)
- T,<10 psec and radiatively limited emission (T,=T,/2) seem possible
-> Fourier-limited photons

Joint work with Gréblacher group, TU Delft

Laser detuning [GHz] T il



Purcell-enhanced emission

- Measurement of auto-correlation coefficient shows non-classical (single-photon) nature of
emissions and confirms interaction with individual erbium ions
- ->single-photon source and possibility for qubit read-out

g2(0) = 0.190+-0.02
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Experimental setup

Joint work with Groblacher group, TU Delft



Purcell-enhanced emission b
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- Demonstration of Stark tunability of single ion E
|

|

L

- Single-photon character not affected

- Feedback mechanism to counter spectral diffusion
-> indistinguishable single photons
-> distant spin-spin entanglement Av:(ae-ﬁg)ﬁ/ h

-> heralded entangled photon pairs

Joint work with Gréblacher group, TU Delft Y. Yu et al.,, Phys. Rev. Lett. 131, 170801 (2023)



How to store photonic
guantum statesin a
multiplexed manner?

Use large ensembles of

atoms
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Room-temperature vapor

Rare-earth crystals

Laser-cooled atoms



How to store photonic
guantum statesin a
multiplexed manner?

Use large ensembles of

atoms
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Photon echo quantum memory (AFC)

eparation of an atomic frequency comb
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2. Absorption of a photon -> fast dephasing

Experiments: Geneva,

Epeer € gN> Lund, Paris, Calgary, Delft,
Barcelona, Hefei, Caltech
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3. Rephasing at t =1/v qpp: 2RA=27(NY comp) Veomp = N 27

* requires phase

matching or cavity

-> Re-emission of photonic qubits with unity efficiency* and fidelity
-> Possibility tu use control pulses for on-demand read-out (if needed)

Needed: inhomogeneously broadened transition, long-lived auxiliary state, narrow homogeneous linewidth

M. Afzelius et al. PRA 79, 052329 (2009)



Towards efficient quantum memory
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The efficiency of the AFC quantum memory is limited by
its optical depth

g\ 2
n = (_1) e—dl/Fe—d0€—7/F2
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Using an impedance-matched cavity allows in
principle to increase the efficiency to 1 despite
small single-pass absorption e

Condition: R,=e?% R,with R,=1

M. Afzelius and C. Simon, Phys. Rev. A 82, 022310 (2010)

(C) dO =0.22 + 0.02
d; = 0.62 +0.04
n=0.98 + 0.11%

-0.5 0.0 0.5
Frequency detuning (MHz)



Towards efficient quantum memory

Reflection-coated Tm:Y;Al:O,, (YAG) crystal

R,=0.40 R,=0.99

uncoated

+ 4mm [+

Cavity transmission spectrum Cavity reflection spectrum
(outside Tm resonance) (within Tm resonance)

Reflected Intensity
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Almost impedance-matched!
J. Davidson, WT et al., PRA 101, 042333 (2020) P



Towards efficient quantum memory

Preparation of light Quantum memory detection

FP

. 8 GHz
I . 1538 nm 1
Akl

FP P
6GHz 1.5 GHz Memary Cryostat MEMS_ |out3

T=600 mK

L, e SNSPD
A B=00127T ; Cryostat

I , o T= 800mK
ECDL , . \ Hy ;
793 nm B599/1 At15dB " 0.1% Iy
— ] N2 g GRIN

Setup allows creating and measuring
- the AFC

- attenuated laser pulses in time-bin qubit states

- time-bin qubits encoded into heralded single photons
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J. Davidson, WT et al., PRA 101, 042333 (2020)



Results

/AFC created using the non—coated\

part of the crystal. n~1%

mFC-based storage of attenuated laser pulses (u=0.7) using \

coated part of crystal
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J. Davidson, WT et al., PRA 101, 042333 (2020)



More Results
4 )

Measurement of non-classical cross-
correlations with photon pairs before and
after storage:

=9.1+1.2

8%herors=61.8 3.8, 8% Y

\_

Q/uantum state tomography of time-bin qubits
encoded into heralded single photons

Quantum process tomography of time-
bin qubits encoded into attenuate laser

” pulses (u=0.7)
Pout — Z anampina;rl

m,n=0

J. Davidson, WT et al., PRA 101, 042333 (2020)
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quantum-enabled
networks based on
an integrated
platform

Single (and soon? entangled) photons based on
Purcell-enhanced emission from single rare-
earthions

Compatible quantum memories based on large
ensembles of rare-earth ions

(Quantum computing nodes using interacting
rare-earth ions coupled to nano-cavities for
readout)

Exploit maturity of Si/SiN/LiNbO, photonics
(foundries) to create compatible, scalable and
integrated quantum network technology

More fundamental research into materials,
protocols, applications,...
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Quantum repeater - how to mitigate loss

Goal: Overcome the exponential scaling of photon transmission over a

long (lossy) quantum channel Exponential scaling

o o
Note: multiplexing does not lead to better scaling
Solution Same scaling
1) Break long link into shorter elementary links. S o
[ @)
o o
2) Distribute heralded and long-lived entanglement across ° o
each elementary link.
3) Multiplex distribution (any degree of freedom) to make it . . oo .
efficient. . . ° o *
4) Mode mapping based on feed-forward info allows . o oo .

connecting “good” links using Bell-state measurements.

Better scaling

[ No need for photons to travel in one go over the entire link. 1

N Sinclair, WT et al., Phys. Rev. Lett. 113, 053603 (2014)



Quantum memory requirements

1) Large storage efficiency

2) Sufficient storage time : o .. .
3) Fidelity ->1 : . . :

4) Feed-forward mode mapping
5) High multiplexing capacity
6) Wavelength of operation

7) Bandwidth per qubit ---\ - - -5
) Banduidih perqub (v =, {ou 1P
8) Integrability '




State-of-the-art

« Comparing results taken under
different conditions... But while not all
experiments demonstrate quantum
nature, all used a quantum protocol

« 2-level AFC: not yet better than fiber,
but close. Materials with sufficient TPt
for t = 1ms exist. Need to reduce
technical noise and add cavities.

« AFC spin-storage: scaling already
better than fiber, but efficiencies still
small. Materials with sufficient T,sPin
exist. Need to improve efficiency of r-
pulses and noise and to add cavities.

* Three use cases (assuming sufficient

multiplexing)

« Quantum repeaters for fiber networks

* Quantum repeaters for satellite
networks

* Physical qubit transport
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