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Hamiltonian for applications 
to condensed matter physics.

(generally referred to as loss 
operator in quantum ML)

Variational Quantum Algorithms are based on a hybrid quantum classical optimization scheme. 

Compute the 
expectation value

Get the new 
parameters

Optimization landscape

Barren Plateau (BP)!

??



Barren Plateaus: a curse of dimensionality

Space of bounded 
operators on H

The exponential concentration of the loss function, dubbed barren plateau, is a major threat to the 
trainability of Parameterized Quantum Circuits (PQCs), and is tightly linked to the dimensionality of the 
space explorable by the circuit

E. Fontana et al., Nat. Comm. 2024, M. Ragone et al., Nat. Comm. 2024 
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Barren Plateaus: a curse of dimensionality

Space of bounded 
operators on H

The exponential concentration of the loss function, dubbed barren plateau, is a major threat to the 
trainability of Parameterized Quantum Circuits (PQCs), and is tightly linked to the dimensionality of the 
space explorable by the circuit

Variance wrt θ of 
the loss function

Each subspace contributes 
independently to the variance

Each contribution is inversely 
proportional to the dimension of 
the corresponding subspace

Typically, such dimension scales exponentially in the number n of qubits. However, in the presence of 
symmetry, some of such contributions might be constant or scale polynomially ⇒ No BP!

E. Fontana et al., Nat. Comm. 2024, M. Ragone et al., Nat. Comm. 2024 
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Barren Plateaus in a picture 

…

Space of bounded 
operators on H

Space of bounded, 
traceless operators 
invariant under the 
action of the PQC

One can visualize what’s going on here using a graph. The space of bounded operators is represented 
here by a set of points, and the action of the PQC by arrows connecting some.

These are generally computed using an 
algebraic approach (Dynamical Lie Algebra)



The emergence of Noise-Induced Barren Plateaus (NIBP)
In the presence of noise, quantum information is lost to the environment. Whenever this happens at a 
constant rate, throughout the space, all contributions vanish exponentially fast in the deep circuit limit.

S. Wang et al., Nat. Comm. 2021
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The emergence of Noise-Induced Barren Plateaus (NIBP)
In the presence of noise, quantum information is lost to the environment. Whenever this happens at a 
constant rate, throughout the space, all contributions vanish exponentially fast in the deep circuit limit.

NIBP phenomenon, expressed in terms of 
the variance in the deep circuit limit

As the quantum information is lost, everything becomes less and less 
distinguishable. In the end, all points collapse into the same one, and all 
parameters inevitably produce the same output, i.e. the variance vanishes.

S. Wang et al., Nat. Comm. 2021

NIBP phenomenon,

⇒



A rich spectrum of quantum noises
Generally, there exist a wide variety of quantum channels, but we only have rigorous result on the 
‘extreme’ cases.

NIBP phenomenon due to a too 
strong interaction with the 
environment

BP phenomenon due to an 
exponential growth of the 
computational space?

Noise properties No noise‘Too much’ noise

Non-unital noise? More?



How we plan to study it?

Single qubit unitary operation Entangling operation

To investigate the main mechanisms at play in this general scenario, we devise a simple yet general 
model, comprised of local unitary designs and general quantum channels



How we plan to study it?

Single qubit unitary operation Entangling operation

To investigate the main mechanisms at play in this general scenario, we devise a simple yet general 
model, comprised of local unitary designs and general quantum channels

Single qubit unitary operation Generic quantum channel, which includes 
both entangling operations and noise 

Add noise 
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Two main applications
In this way, we can associate a non-negative matrix to each layer of the channel. 
Interestingly, the spectral properties of T can give valuable information on the variance of the full model.

● Analytical variance computation in the 
deep circuit limit (L>>1)

● General formalization of BP free, smart 
initializations as stochastic unravelling of 
sufficiently  weak noise maps
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Analytical variance for general channels
*Holds rigorously for aperiodic circuits. 
For periodic circuits only holds for the 
Cesàro sum of all depths L.
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For deep circuits, we have Theorem 1 (Deep circuits):

The variance converges* exponentially fast in the number of layers L to a limiting value, i.e.

Analytical variance for general channels

Variance of loss function in the 
limit of large number of layers

Sum over suitable invariant 
subspaces of both the single 
qubit blocks and the 
intermediate channel, based on 
the largest block eigenvalue

Dimension of such 
subspaces

Locality (= purity) of the initial state and observable
Absorption matrix, 
represents the 
absorption to the 
invariant subspaces

Unitary 
contribution

Noise 
contribution

*Holds rigorously for aperiodic circuits. 
For periodic circuits only holds for the 
Cesàro sum of all depths L.
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Lower-bounding the variance
Recalling that:

The variance converges* exponentially fast in the number of layers L to a limiting value, i.e.

It becomes clear that for deep circuits, the only way to escape such bound is by enforcing a slower speed 
of convergence to the process, acting on the constant β

⇒

This regime is achieved easily 
by constraining the second 
largest eigenvalue of relevant 
blocks

Here, lower-bounds can actually be found.
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Theorem 2 (Shallow circuit). 
If the diagonal entries of T scale as Tij~1-log(n)/L, then β~log(n)/L and the variance is lower bounded by
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observable.
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Meaning in terms of channel property

Theorem 2 (Shallow circuit). 
If the diagonal entries of T scale as Tij~1-log(n)/L, then β~log(n)/L and the variance is lower bounded by

where F(n) decays polynomially with n.
Orthogonality 
measure between the 
initial state and 
observable.

Example: Lindbladian noise

Basically, weak enough 
noise won’t produce NIBP
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For any given noise map, we are guaranteed to be able to express it a stochastic unraveling, i.e. as the 
expectation value of some simpler operators. For maps as before, such operators can even be unitary!



Stochastic unravelings of channels and QResNets
For any given noise map, we are guaranteed to be able to express it a stochastic unraveling, i.e. as the 
expectation value of some simpler operators. For maps as before, such operators can even be unitary!

We call this a 
QResNet!

⇒



Stochastic unravelings of channels and QResNets

Proposition 4 (informal)
The variance of a channel is always smaller than the variance of the corresponding stochastic unravelling, 
with equality holding if and only if the channel is unitary.

Quantum channel is 
still interpreted as 
noise Quantum channel is used 

to derive the 
corresponding QResNet, 
and the used as trainable 
anstaz

Where the probability distribution over ϕ is defined by the unraveling.



Conclusions

We introduced a new tool for the analysis of concentration in noisy variational circuits.
In particular, we observed:

● Concentration for noisy circuits is more intricate than one can naively expect.

● Noise can not only induce barren plateaus, but also prevent it if engineered correctly.

● Weak noise maps are closely related to small angle-like initialization strategies. 
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