Learning to generate high-dimensional distributions with low-dimensional quantum Boltzmann machines

<u>Cenk Tüysüz</u>, Maria Demidik, Luuk Coopmans, Enrico Rinaldi Vincent Croft, Yacine Haddad, Matthias Rosenkranz and Karl Jansen

arXiv: 2410.16363

DESY

ctuysuz@mail.desy.de

Quantum generative modelling

Challenge:

Almost all quantum machine learning (QML) algorithms suffer from trainability issues!

- Q. circuit Born machines (QCBM)
- Q. generative adversarial networks (QGAN)
- Quantum Boltzmann machines (QBM)

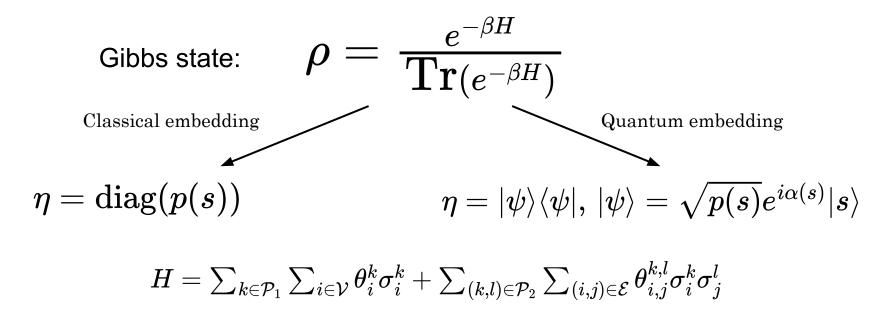
• Recently, *fully-visible* QBMs (fv-QBM) have been shown to be sample-efficiently trainable.

L. Coopmans, et al., Commun Phys 7, 274 (2024)

• However, fv-QBMs are not as expressive as generic QBMs or possibly RBMs.

- → Can fv-QBMs solve practically relevant tasks?
- → Can we make them more expressive, while still being trainable?

Fully visible (quantum) Boltzmann machines



Gradients are computed over the expectation values of the $\partial_{\theta_i} S(\eta || \rho_{\theta}) = \operatorname{Tr}(\eta H_i) - \operatorname{Tr}(\rho_{\theta} H_i)$ \longrightarrow Convex loss landscape Hamiltonian terms

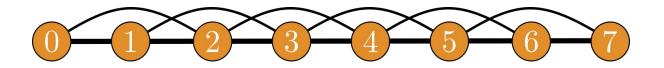
Target distribution

Learning Boltzmann distributions-1

Let us define a Boltzmann distribution on 8 sites as

$$E(s) = \sum_{i=1}^n s_i + \sum_{i=1}^{n-1} s_i s_{i+1} + 0.5 imes \sum_{i=1}^{n-2} s_i s_{i+2}$$

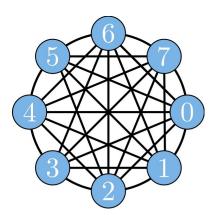
On the next nearest-neighbor connected lattice:



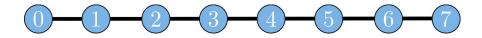
Model Learning Boltzmann distributions-2

Now let use define two Boltzmann machines:

All-to-all connected:



Nearest-neighbor (NN) connected:



Results

Learning Boltzmann distributions-3

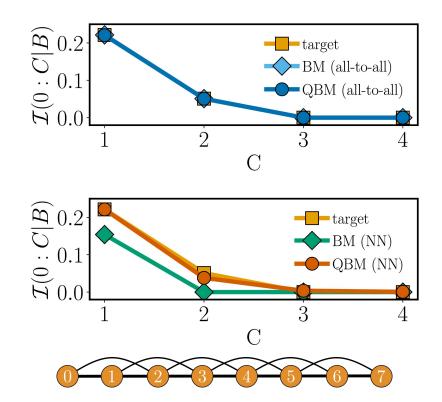
 \rightarrow Both all-to-all connected models can learn the target distribution.

 \rightarrow NN connected BM cannot learn the target distribution.

 \rightarrow NN connected QBM can approximate the target distribution well.

	All-to-all	NN
BM	0.0	0.4
QBM	0.0	0.15

Conditional mutual information:



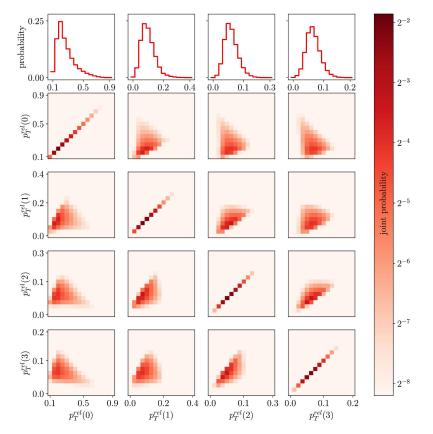
Learning particle jet events

Dataset description

To obtain the probability distribution, we create a histogram of particles' $|p_T|$ values that belongs to W bosons using the publicly available JetNet dataset.

We choose $n_{\rm particle}$ many leading particles to truncate the jet event.

$$n_{\text{particle}} \in \{2, 3, 4\}$$

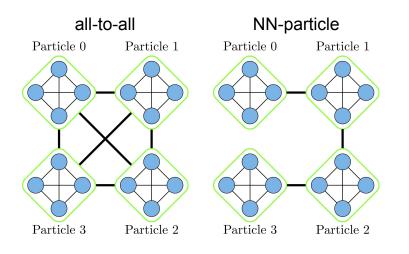


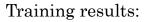
Learning particle jet events

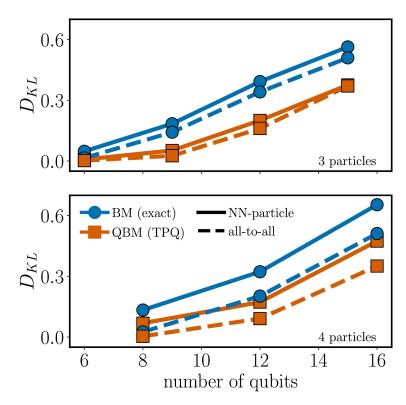
Comparing model connectivity

 \rightarrow all-to-all connected QBM outperforms all other models.

 \rightarrow NN-particle connected QBM either outperforms or matches the all-to-all connected BM.







Learning particle jet events

Impact of operator pool

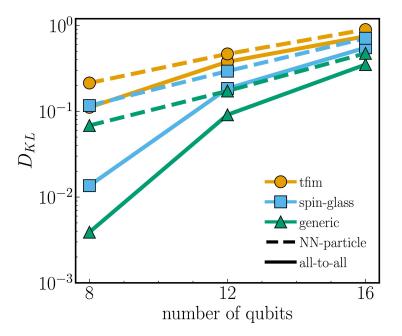
 \rightarrow Performance depends on Hamiltonian choice.

 \rightarrow Connectivity and Hamiltonian terms can be alternated based on the available resources.

 \rightarrow Transversal field Ising model (tfim), often used in literature, is not the best choice!

 $H = \sum_{k \in \mathcal{P}_1} \sum_{i \in \mathcal{V}} \theta_i^k \sigma_i^k + \sum_{(k,l) \in \mathcal{P}_2} \sum_{(i,j) \in \mathcal{E}} \theta_{i,j}^{k,l} \sigma_i^k \sigma_j^l$

$$\mathscr{P}_1$$
 \mathscr{P}_2 tfim X, Z spin-glass X, Y, Z generic X, Y, Z X, Y, Z



probability distributions, while fv-BMs

fv-QBMs can learn higher dimensional

There are probability distributions that

can be learned better with fv-QBMs

compared to fv-BMs.

can only learn the distributions matching their dimension.

Summary

٠

• fv-QBMs perform better with a larger operator pool and the benefit is interchangeable with its dimension.

More details available:

