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Quantum generative modelling

Almost all quantum machine e Recently, fully-visible QBMs (fv-QBM) have been
learning (QML) algorithms suffer shown to be sample-efficiently trainable.

from trainability issues!
y L. Coopmans, et al., Commun Phys 7, 274 (2024)

- Q. circuit Born machines
(QCBM) e However, fv-QBMs are not as expressive as

- Q. generative adversarial generic QBMs or possibly RBMs.
networks (QGAN)

- Quantum Boltzmann

machines (QBM)
- -  Can fv-QBMs solve practically relevant tasks?

- Can we make them more expressive, while still
being trainable?
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Fully visible (quantum) Boltzmann machines

—BH
Gibbs state: P = TI’

Classical embedV Wﬁum embedding

n = diag(p(s n= Y)W, [¥) = /p(s)e’™]|s)

kl
H = ZkePl D iey ‘9?0? + Z(k,l)épz Z( J)EE 0 J

Gradients are computed over the
expectation values of the —» 09,S(n||pg) = Tr(nH;) — Tr(pg H;) ——» Convex loss landscape
Hamiltonian terms
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Target distribution

Learning Boltzmann distributions-1

Let us define a Boltzmann distribution on 8 sites as
B(s) = Y0y s+ 0 sisin + 0.5 % Y02 sisis

On the next nearest-neighbor connected lattice:
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Model

Now let use define two Boltzmann machines:

All-to-all connected: Nearest-neighbor (NN) connected:

000600600
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Results

— Both all-to-all connected models can learn
the target distribution.

— NN connected BM cannot learn the target

distribution.

— NN connected QBM can approximate the
target distribution well.
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Learning particle jet events

Dataset description

To obtain the probability distribution, we
create a histogram of particles’ | p,, | values
that belongs to W bosons using the publicly
available JetNet dataset.

We choose M article AN leading particles to
truncate the jet event.
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Learning particle jet events

— all-to-all connected QBM outperforms all
other models.

— NN-particle connected QBM either
outperforms or matches the all-to-all
connected BM.

all-to-all NN-particle
Particle 0 Particle 1 Particle 0 Particle 1
Particle 3 Particle 2 Particle 3 Particle 2

Training results:

| =@=DBM (exact)

mmmmm N N-particle
== QBM (TPQ) == = all-to-all
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Learning particle jet events

Impact of operator pool

— Performance depends on Hamiltonian choice.

— Connectivity and Hamiltonian terms can be
alternated based on the available resources.

— Transversal field Ising model (tfim), often used in
literature, 1s not the best choice!
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Summary More details available:

* There are probability distributions that E

can be learned better with fv-QBMs arXiv:2410.16363
compared to fv-BMs.

+  fv-QBMs can learn higher dimensional
probability distributions, while fv-BMs
can only learn the distributions
matching their dimension.

More expressive

«  fv-QBMs perform better with a larger
operator pool and the benefit is
interchangeable with its dimension.

More expensive to train
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