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Introduction

Symmetries are central to the standard model and many other frameworks in physics. When addressing a
learning task where the data is expected to originate from a process well-described by such physical frame-
works, it is crucial to incorporate these symmetries into the inductive bias of the machine learning (ML)
model. This leads to a theoretically provable improvement in the performance of the ML model in terms of
sample complexity [1] and generalization error [2]. Empirical evidence is provided by the remarkable success
of convolutional neural networks in image processing [3] and equivariant graph neural networks in network
analysis under certain assumptions [4].

Quantum machine learning (QML) is a toolbox capable of solving learning tasks relevant to fundamental
physics provably beyond classical means [5]. To fully exploit this potential, it is crucial to develop techniques
that integrate symmetries directly into QML algorithms. Meyer et al. (2023) [6] has focused on variational
algorithms for near-term quantum devices, introducing a circuit-first strategy to enforce symmetries by de-
signing an equivariant set of gates. A modification of this method has been successfully employed in the
classification of high-energy particle decays while respecting SO(1, 3)-Lorentz invariance using quantum
neural networks [7]. Forming your circuit out of an equivariant gate set increases the potential of inductive
bias of the model and reduces the risk of exponential concentration by restricting the potential function space
of the model.

In this work, we aim to expand the range of near-term quantum machine learning techniques that enforce
symmetries and are applicable to tasks in high-energy physics. Specifically, we focus on developing invari-
ant quantum kernels. Quantum kernels are similarity measures computed with the assistance of a quantum
computer, with the embedding quantum kernel [8] being one of the most widely studied formulations. In this
approach, classical data is encoded into the density matrix of a quantum system through a parameterized
unitary or a quantum channel. The similarity measure between pairs of classical data is then given by the
trace of the product of their corresponding density matrices. The mathematical framework of kernel methods
enables some theoretical analysis, such as the task-model alignment [9] and the exponential concentration
of kernel values [10], which cannot be applied to quantum neural networks due to the non-convexity of the
training landscape of the latter¹.

Bringing permutation invariance of certain features of a datapoint to a kernel brings about subtleties one must
consider regarding the kernel type, embedding strategy, (un)intentional feature engineering, and the observ-
able. First, permutation invariance in global fidelity kernels can only be achieved with embeddings which



effectively define new, combined features that are combinations of the permutable features and invariant un-
der permutation, such as (xi + xj)/2 or xixj . In other words, the features that are permutation invariant do
not affect the output similarity individually, but together via a permutation invariant pre-processing function
g(xi, xj) that effectively defines new aggregate features. To tackle this issue and provide functional depen-
dence directly on the raw features, we propose a variant of the linear projected quantum kernel that utilizes
a partial measurement.
1Some analyses on QNN share similarities with the ones on quantum kernels, e.g., the ones focusing on exponential
concentration, or again by approximating the model as a quantum neural tangent kernel.

Contributions

We recall the definition of the embedding quantum kernel.

Definition (EmbeddingQuantum Kernel)

Given a feature embedding x ∈ X 7→ ρ(x), which maps classical data into a quantum density operator, the
embedding quantum kernel κ is a mapping:

$κ : X × X 7→ R, κ(x, x′) = Tr[ρ(x)ρ(x′)].

An invariant generator set is always defined with respect to an initial data embedding unitary
U(\mathbf{x}) and the relevant symmetry group \mathcal{S} for whose elements one needs
to find induced unitary representations. These induced representations are defined as follows.

Definition (Induced Unitary Representations of Symmetry Transformations) Let \mathcal{S} be
a symmetry group under whose action the data domain \mathcal{X} remains invariant for the
given learning task, i.e., f(\mathbf{x}) = f(V _s[\mathbf{x}])where f is the learned function,
s\in\mathcal{S} andV _s[\mathbf{x}] represents the action of s on \mathbf{x}\in\mathcal{X}.
Given then an embedding unitaryU(\mathbf{x}) embedding the datum \mathbf{x}\in\mathcal{X},
the set of unitaries \{U_s|s\in\mathcal{S}\} induced by the symmetry group \mathcal{S} im-
plement the symmetry transformations for the embedding in:

U(Vs[x]) = UsU(x)U†
s

With this, we can formally define the invariant generator set as follows.

Definition (Invariant Generator Set) Let \mathcal{S} be a symmetry group under whose action the
data domain \mathcal{X} remains invariant for the given learning task, i.e., f(\mathbf{x}) =
f(V _s[\mathbf{x}]), and the set of unitaries induced by the symmetry transformations \{U_s|s\in\mathcal{S}\}.
An invariant generator set consists precisely of those unitariesW forwhich it holds that, for all s\in\mathcal{S}:

[W, Us] = 0

The set of generators for which this condition holds can be found using the Twirling formula:

TU [X] = 1
|S|

∑
s∈S UsXU†

s .

We consider two different kinds of permutation invariances: datapoint-wise and feature-wise.

Definition (Feature-Wise Permutation) Given a data vector \mathbf{x} = [x_1, \dots, x_i, \dots, x_j, \dots, x_n]\top,
a feature-wise permutation of \mathbf{x} is defined as \pi_{i, j}(\mathbf{x}) = [x_1, \dots, x_j, \dots, x_i, \dots, x_n]\top.

Definition (Datapoint-Wise Permutation) Given a function g : \mathcal{X}\times\mathcal{X}\mapsto\mathbb{R}
evaluated as g(\mathbf{x}, \mathbf{x}′), a datapoint-wise permutation yields g(\mathbf{x}′, \mathbf{x}).

Definition (Feature-Wise Invariant EmbeddingQuantum Kernel) Let \kappa be an embedding quantum
kernel on the data domain \mathcal{X}. Let \mathcal{S} be a symmetry group under whose action
\mathcal{X} remains invariant for the given learning task. Then, a feature-wise permutation invariant
embedding quantum kernel has the property:

κ(x, x′) = κ(π(x), π′(x))

for all permutation transformations \pi, \pi′\in\mathcal{S} of features in \mathbf{x}, \mathbf{x}′.

**Figure here, see pdf**

**(a):** Fidelity test. **(b):** Quantum circuit implementing the function \gamma in Equation 7.

We focus here on specific kinds of symmetry, the permutation and Lorentz invariance, and a specific
kind of initial embedding unitary, the angle embedding. Specifically, we rely on a quantum circuit



obtained as a variant of the *fidelity* or *overlap test* (cf. Figure 1a). Such a circuit is shown in Figure
1b and implements the following transformation:

γ(x, x′) = Tr
[
U†(x′)U(x)ρ0U

†(x)U(x′)(I⊗ |0 >< 0|)
(
7)

= Tr
[
U(x)ρ0U

†(x)U(x′)(I⊗ |0 >< 0|)U†(x′)
]

= Tr[ρxρ̄x′ ]

Here, \rho_0 = |0 >< 0| is the initial state of the computation, \rho_x is obtained by applying the
invariant feature embedding U (representing angle embedding followed by U_\text{inv}) over the
datapoint \mathbf{x} to \rho_0, and \bar\rho_{x′} is obtained by applying the invariant feature
embedding U (representing angle embedding followed by U_\text{inv} over the datapoint x over an
initial state \mathbb{I}\otimes|0 >< 0|\neq\rho_0). Notably, this function is not datapoint-wise
permutation invariant, and it is not a kernel, as we are practically encoding the two data points using
different embeddings.

A kernel can be defined via the mapping:

κ(x, x′) = γ(x,x′)+γ(x′,x)
2 (10)

The kernel in Equation (10) is a proper Mercer kernel, symmetric in its argument by construction and
whose positive semi-definiteness holds by:

γ(x, x) = Tr[U†(x)U(x)ρ0U
†(x)U(x)(I⊗ |0 >< 0|)] = Tr[ρ0(I⊗ |0 >< 0|)] = 1 ≥ 0

The projection onto the subset of qubits associated with non-symmetric features is a key ingredient in
obtaining the feature-wise permutation invariance. Lorentz invariance is obtained withWeyl’s theorem
[11].

Application to Vector Boson Scattering

An eventual goal of this study is to demonstrate the applicability of this symmetry-aware embedding
quantum kernel technique in a realistic LHC data analysis use case. In particular, it will be applied
to classify proton-proton collision events recorded by the CMS experiment in order to identify rare
vector boson scattering (VBS) events, reconstructed in an all-hadronic final state, from an overwhelming
background of multijet events induced by quantum chromodynamics.

Besides its importance for understanding the electroweak symmetry breaking, the VBS process is chosen
as a use case because its experimental signature exhibits well-defined characteristic symmetries, making
it suitable to demonstrate this symmetry-aware approach: (1) permutation invariance among the two
massive vector bosons reconstructed as central large-radius jets, (2) permutation invariance among the
two small-radius forward jets in the opposite ends of the detector (a characteristic feature of the VBS
process that distinguishes it from other diboson production processes), and (3) the Lorentz invariance
of the energy-momentum four-vectors of these four jets.

Dataset Monte Carlo simulation of signal (VBS) and background (QCD) processes, including full simu-
lation of detector response, is performed to produce samples used in training and testing the algorithm.
The eventual goal is to apply the trained model in the analysis of collision data recorded by CMS. The
features consist of permutation invariant and variant ones.

Experimental Setup We first create a hardware-efficient invariant quantum kernel of form Eq. (7)
and compare it with a kernel that uses the same circuit but with the global all-zero measurement
\bigotimes_{i = 1}{n}|{0} > breaking the feature-wise invariance. This does not change anything
within the original circuit operations, only extends the observable to the rest of the qubits and therefore
provides a natural comparison between an invariant and a non-invariant model. We perform hyperpa-
rameter optimization with respect to regularization \lambda and the bandwidth \omega. The quantum
kernels are ideally simulated with the eventual aim of being inspected for exponential concentration,
geometric difference, and target alignment in the number of qubits.

Analysis We aim to evaluate our approach in terms of the area-under-curve (AUC) of the receiving oper-
ator characteristic (ROC), true positive rate working points, and concentration of the off-diagonal Gram
matrix values. Relative differences between AUCs of the permutation invariant and variant models are
displayed in Table 1 with respect to different dataset sizes.

Table 1: Preliminary Results | **Dataset size** | **\|\mathcal{D}{train}\|=500∗ ∗ | ∗ ∗\|\mathcal{D}{train}\| =
750** | **\|\mathcal{D}{train}\|=1000∗ ∗ || − − −−−−−−−−−−−−| − −−−−−−−−−−−−−| − −−−−−−−−−−−−−| − −−−−−−−−−−−−−||MeanAUC(permutationinvariant)|0.599(\pm 0.036)|0.638(\pm 0.033)|0.651(\pm 0.023)||MeanAUC(permutationvariant)|0.557(\pm 0.034)|0.562(\pm 0.044)|0.572(\pm 0.039)||Relativedifference|7.60%(\pm 6.83)|13.46%(\pm 9.03)|13.89%(\pm 9.04)|Preliminaryresultsofthework − in− progresswithn{qubits} =



8. For each column, |\mathcal{D}{train}|=|\mathcal{D}{test}| with balance of signal and background
samples in \mathcal{D}{train} \cup \mathcal{D}{test}$.
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Short summary
Symmetries play a fundamental role in high-energy physics, and integrating these symmetries into quantum
machine learning (QML) models can enhance their performance. This work extends recent approaches in
QML to incorporate symmetries such as permutation and Lorentz invariance into quantum kernels. Our
method introduces feature-wise permutation invariance, a symmetry particularly relevant for high-energy
physics applications, such as vector boson scattering (VBS) classification. We study the potential benefits of
symmetry-aware quantum kernels on Monte Carlo simulated data for VBS identification against the quantum
chromodynamics background, with preliminary results showing promise for a preliminarymodel comparison,
reflected in higher area-under-curve (AUC) values for the permutation-invariant model.
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