IBM Quantum

Engineering periodic boundary conditions with circuit cutting for high-energy physics

Speaker

Daniel Egger Senior Research Scientist

IBM Quantum

Collaborators

Almudena Vazquez

Diego Riste

Caroline Tornow

Stefan Woerner

Maika Takita

Henrike Cornelia Christ

Contents

Circuit cutting

Highenergy physics

Experiment results

Theory & demonstration

Model

Periodic boundary conditions with circuit cutting for HEP

Superconducting processors have limited connectivity.

Many computations require long-range connectivity. Example: periodic boundary conditions.

How do we overcome this limited connectivity?

Circuit knitting: theory

A virtual gate is implemented by a sum over several circuits

$$\mathcal{E}(\cdot) = \sum_{i} a_{i} \mathcal{E}_{i}(\cdot)$$

$$\mathcal{E}(\rho) = \gamma \sum_{i} \frac{|a_{i}|}{\gamma} sign(a_{i}) \mathcal{E}_{i}(\cdot)$$

Allows us to cut gates.

- A quantum channel \mathcal{E} can be decomposed into a linear ulletcombination of several channels \mathcal{E}_i with coefficients a_i .
- The a_i do not form a valid probability decomposition ulletsince some $a_i < 0 \Rightarrow$ cannot sample.
- We transform to a valid probability distribution via ullet

$$\gamma = \sum |a_i|$$

- Now $\sum \frac{|a_i|}{v} = 1$ and $|a_i|/\gamma$ form a valid probability distribution.
- Many different implementations: w/wo classical \bullet communication, parallel gates, etc.

Circuit knitting: demonstration

We implement long range gates to engineer graph states with periodic boundary conditions on >100 qubits.

nature

Explore content ~ About the journal ~ Publish with us ~

nature > articles > article

Article Open access Published: 20 November 2024

Combining quantum processors with real-time classical communication

Almudena Carrera Vazquez, Caroline Tornow, Diego Ristè, Stefan Woerner, Maika Takita & Daniel J. Egger

<u>Nature</u> 636, 75–79 (2024) <u>Cite this article</u>

Periodic graph state on a line of qubits.

Circuit knitting: demonstration

We implement long range gates to engineer graph states with periodic boundary conditions on >100 qubits.

nature

Explore content Y About the journal Y Publish with us Y

nature > articles > article

Article Open access Published: 20 November 2024

Combining quantum processors with real-time classical communication

Almudena Carrera Vazquez, Caroline Tornow, Diego Ristè, Stefan Woerner, Maika Takita & Daniel J. Egger

<u>Nature</u> 636, 75–79 (2024) <u>Cite this article</u>

Circuit knitting: CZ example

- A CZ gate can be implemented by a QPD with 6 circuits.
- Cost of this QPD γ=3.
 [Mitarai, New. J. Phys. (2023)]
- In practice, better LO decompositions exist that reach the same γ as LOCC.
 [Ufrecht, arXiv:2312.09679 (2023), Schmitt, arXiv:2312.11638 (2023)]

x+l

(x,l)

 \boldsymbol{x}

Continuous space and time

- Principles of Gauge lacksquareinvariance
- Basic elements of a YanglacksquareMills Theory

 $l \bigstar$

- Hamiltonian formulation \bullet
- Quantum link model \bullet
- Gauge- and matter-field operator relations

Quantum simulation

Real variational quantum simulation

0

Trotterized time evolution

Discretized model of fermions ψ interacting with a gauge field E/U

Experiment 1: ring of 3 particles and anti-particles \implies 12 qubits

 \Rightarrow Compare periodic BC with circuit cutting and without.

Experiment 1: ring of 3 particles and anti-particles \implies 12 qubits

Run 1: Open BC on a line

Run 2: Periodic BC on the ring

Run 3: Periodic BC on a line with standard circuit cutting [Schmitt et al. arXiv:2312.11638, Harrow & Lowe arXiv:2403.01018]

Run 4: Periodic BC on a line with circuit cutting tailored to the model

$$U_{int}(\theta) = \exp[-i\theta] \left(1 + \frac{\cos(\theta) - 1}{4}\right) III + \frac{\cos(\theta) - 1}{4} (IZZ - \theta)$$

(XXX - XYY + YYX + YXY)]- ZIZ - ZZI) + $\frac{-i\sin(\theta)}{4}(XXX - XYY + YXY + YYX)$

Experiment 1: ring of 3 particles and anti-particles \implies 12 qubits

Mean-squared error with the ideal noiseless simulations

Poforonco	OBC	PBC		
Reference	Run 1	Run 2	Run 3	Run 4
Ideal PBC	10.6%	2.4%	4.5%	3.2%
Ideal OBC	3.7%	13.9%	9.9%	12.8%

Experiment 2: Two rings of 8 particles and anti-particles \implies 18 qubits

- MSE with PBC of 4.3% and 1.1% for the circuit cutting compared to 57.8% with OBC.
- Results are good so long we increase the sampling overhead with γ.

Conclusion & Outlook

We can go beyond planar topologies with circuit cutting

- Graph states at utility scale O(100) qubits ullet
- First circuit cutting experiments with Trotter simulations of LGT on O(10) qubits \bullet
- Problem tailored circuit cutting reduces γ ullet

Circuit cutting is exponentially expensive

- Can we use it sparingly to engineer classically hard problems? •
- Can we scale-up the LGT simulations within a reasonable γ -budget?

IBM Quantum

Goal: compute the time dynamics under H_{LGT} , implement $e^{-itH_{LGT}}$ with quantum gates

$$E\sigma(-1)^{k} E_{k} - \sum_{k} c \left(\psi_{k}^{\dagger} U_{k,k+1}\psi_{k+1} + h.c.\right)$$
eld term
Interaction term

- Mapping from fermion & fields to qubits
- Each particle and anti-particle is mapped to a qubit.
- The field is modeled as a single qubit with 2 levels

$$\sum_{i \in link} \frac{c}{4} \left(X_{j-1} X_j X_{j+1} - X_{j-1} Y_j Y_{j+1} + Y_{j-1} Y_j X_{j+1} + Y_{j-1} X_j Y_{j+1} \right)$$

Interaction term

Experiment 1: ring of 3 particles and anti-particles \implies 12 qubits

	Dafaranca	••••		
Reference	Run 1	Run 2	Run 3	
	Ideal PBC	10.6%	2.4%	4.5%
	Ideal OBC	3.7%	13.9%	9.9%

noiseless simulations

