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Quantum signal processing |: overview

B quantum signal processing (QSP): framework for implementing
polynomial functions via quantum circuits; can be viewed as a linear
algebra/complex analysis theorem

B QSP applies to scalars, but is lifted to the quantum singular value
transformation (QSVT) to apply to matrices

B utility of QSP/QSVT: implement polynomial approximants of
non-polynomial functions; key examples f(x) = e, f(x) = 1/x

B classical pre-processing workflow:

polynomial factor
approximation determination
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Quantum signal processing Il: result

Result. Exact contour integral and Fourier series representations for the
complementary polynomial Q(z), together with an efficient Fast Fourier

Transform (FFT)-based algorithm for computing Q(z) in the monomial
basis.

phase -

factor
finding
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Complementary polynomials |

B polynomials p(x) € R[x] can be expanded in the Chebyshev basis,

d
p(X) - Z Pn TH(X)v
n=0

where T,(cos ) := cos(nb)
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B polynomials p(x) € R[x] can be expanded in the Chebyshev basis,

d
p(X) - Z pnTn(X)a
n=0

where T,(cos ) := cos(nb)

B Chebyshev polynomials correspond to Laurent polynomials,

1
Th(x) = E(z” +z7") (neNuU{0},x =Rez,zeT),

where T .= {z € C: |z| =1}, i.e., p(x) maps to some
F(z) € R[z,z7Y]

B work with (Laurent) polynomials on T C C, use complex analysis;
Laurent polynomials on T may be identified with trigonometric
polynomials, allowing for Fourier analytic interpretation of results
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Complementary polynomials Il

Theorem (Laurent QSP, Haah 2019 [1])
Let F(z) € R[z,z7 1] with deg F = d € Z>1 and parity d mod 2 such that

|F(z)] <1 onT. Then, there exists a complementary polynomial
G(z) € Rlz,z '] and phase factors ¢ = (¢;)5_y € (—m, 7]%"! such that

( F(z) iG(z )_(cosqﬁo isind)())
iG(z7Y) F(z7') )~ \ isingg cosep

d z 0 cos ¢; isin ¢;
. Ll:[l<0 z1 )(isingﬁjj cosqu )]

holds for all z € T.
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Complementary polynomials Il

B unitarity/complementarity: |F(z)]?> +|G(z)|? =1forz€ T
B note: if F(z), G(z) satisfy |F(2)|? +|G(z)[> =1 on T then so do
P(z) = 27F(2), Q(z) = 276G(2)

Complementary polynomials problem
Given P(z) € C|Z] satisfying |P(z)| <1 on T, find Q(z) € C[z] such that

P2 + Q)P =1 (z€T).
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Complementary polynomials Il

Define a Fourier multiplier I acting on {€!"} <z by

e n>0
I'I[Ci”e] = % n=20
0

n < 0.

Theorem (Fourier analytic representation of complementary

polynomials)

Suppose that P(z) € C|z] satisfies the conditions of the complementary
polynomials problem. Then,

Q) = exp (N log (1~ |PE)P)] ) (@ € (-]

solves the complementary polynomials problem for z = ¢l € T.
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Complementary polynomials 1V

B Fourier analytic representation of the complementary polynomial
suggests an efficient FFT-based algorithm for computing Q(z) in the
monomial basis
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Complementary polynomials 1V

B Fourier analytic representation of the complementary polynomial
suggests an efficient FFT-based algorithm for computing Q(z) in the
monomial basis

B dimension N FFT scales as O(N log N) and our algorithm requires
N = O(dlog(d/¢)) to achieve uniform error €

B algorithm compares favorably, with respect to both accuracy and

runtime, to previous state-of-the-art optimization-based method
developed for generalized QSP (GQSP) [2]

B GQSP removes the reality/parity constraints of standard QSP:
arbitrary complex polynomials P(z) with ||P(z)|lco, T < 1 may be
represented
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Numerical results |: random polynomials

Random polynomials with ||P(2)||-, 7= 0.8
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Numerical results II: Hamiltonian simulation

d
eiTX = JO(T) =+ Z ian(T) Tn(X) + eI‘I“(T, d)v €= ‘el"l"(T, d)’
n=1

Hamiltonian simulation polynomials
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Summary and outlook

polynomial factor
approximation determination

B Fourier analytic resolution of the complementary polynomials problem
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Summary and outlook

polynomial factor
approximation determination

B Fourier analytic resolution of the complementary polynomials problem
B exact, analytic result inspires efficient algorithm

B recent work of Alexis, et. al. [3]: phase factors also computable via
FFTs

B future work: complementary polynomials for state-of-the-art
GQSP-based Hamiltonian simulation [4], complementary polynomials
for MQSP
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