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Quantum signal processing I: overview

■ quantum signal processing (QSP): framework for implementing
polynomial functions via quantum circuits; can be viewed as a linear
algebra/complex analysis theorem

■ QSP applies to scalars, but is lifted to the quantum singular value
transformation (QSVT) to apply to matrices

■ utility of QSP/QSVT: implement polynomial approximants of
non-polynomial functions; key examples f (x) = eixt , f (x) = 1/x

■ classical pre-processing workflow:
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circuituniform
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determination
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Quantum signal processing II: result

polynomial
p(x)

complementary
polynomial
Q(z)

QSP/QSVT
circuitcompletion phase

factor
finding

Result. Exact contour integral and Fourier series representations for the
complementary polynomial Q(z), together with an efficient Fast Fourier
Transform (FFT)-based algorithm for computing Q(z) in the monomial
basis.
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Complementary polynomials I

■ polynomials p(x) ∈ R[x ] can be expanded in the Chebyshev basis,

p(x) =
d∑

n=0
pnTn(x),

where Tn(cos θ) := cos(nθ)

■ Chebyshev polynomials correspond to Laurent polynomials,

Tn(x) = 1
2(zn + z−n) (n ∈ N ∪ {0}, x = Re z , z ∈ T),

where T := {z ∈ C : |z | = 1}, i.e., p(x) maps to some
F (z) ∈ R[z , z−1]

■ work with (Laurent) polynomials on T ⊂ C, use complex analysis;
Laurent polynomials on T may be identified with trigonometric
polynomials, allowing for Fourier analytic interpretation of results
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Complementary polynomials II

Theorem (Laurent QSP, Haah 2019 [1])

Let F (z) ∈ R[z , z−1] with deg F = d ∈ Z≥1 and parity d mod 2 such that
|F (z)| < 1 on T. Then, there exists a complementary polynomial
G(z) ∈ R[z , z−1] and phase factors ϕ = (ϕj)d

j=0 ∈ (−π, π]d+1 such that(
F (z) iG(z)

iG(z−1) F (z−1)

)
=
(

cos ϕ0 i sin ϕ0
i sin ϕ0 cos ϕ0

)

×
[ d∏

j=1

(
z 0
0 z−1

)(
cos ϕj i sin ϕj
i sin ϕj cos ϕj

)]

holds for all z ∈ T.
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Complementary polynomials III

■ unitarity/complementarity: |F (z)|2 + |G(z)|2 = 1 for z ∈ T

■ note: if F (z), G(z) satisfy |F (z)|2 + |G(z)|2 = 1 on T then so do
P(z) = zdF (z), Q(z) = zdG(z)

Complementary polynomials problem
Given P(z) ∈ C[z ] satisfying |P(z)| < 1 on T, find Q(z) ∈ C[z ] such that

|P(z)|2 + |Q(z)|2 = 1 (z ∈ T).
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Complementary polynomials III

Define a Fourier multiplier Π acting on {einθ}n∈Z by

Π[einθ] =


einθ n > 0
1
2 n = 0
0 n < 0.

Theorem (Fourier analytic representation of complementary
polynomials)
Suppose that P(z) ∈ C[z ] satisfies the conditions of the complementary
polynomials problem. Then,

Q(eiθ) = exp
(

Π
[

log
(
1 − |P(eiθ)|2

)])
(θ ∈ (−π, π])

solves the complementary polynomials problem for z = eiθ ∈ T.
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Complementary polynomials IV

■ Fourier analytic representation of the complementary polynomial
suggests an efficient FFT-based algorithm for computing Q(z) in the
monomial basis

■ dimension N FFT scales as O(N log N) and our algorithm requires
N = O(d log(d/ε)) to achieve uniform error ε

■ algorithm compares favorably, with respect to both accuracy and
runtime, to previous state-of-the-art optimization-based method
developed for generalized QSP (GQSP) [2]

■ GQSP removes the reality/parity constraints of standard QSP:
arbitrary complex polynomials P(z) with ∥P(z)∥∞,T < 1 may be
represented
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Numerical results I: random polynomials
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Numerical results II: Hamiltonian simulation

eiτx = J0(τ) +
d∑

n=1
inJn(τ)Tn(x) + err(τ, d), ε = |err(τ, d)|

Φ̃

N/d
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Summary and outlook

non-polynomial
function f (x)

polynomial
p(x)

QSP/QSVT
circuituniform

polynomial
approximation

phase
factor
determination

■ Fourier analytic resolution of the complementary polynomials problem

■ exact, analytic result inspires efficient algorithm
■ recent work of Alexis, et. al. [3]: phase factors also computable via

FFTs
■ future work: complementary polynomials for state-of-the-art

GQSP-based Hamiltonian simulation [4], complementary polynomials
for MQSP
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