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Collaborators

My talk will be based on [PRD 110, 9 (2024), arXiv:2407.190222] with

Michael Spannowsky Timur Sypchenko Simon Williams
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Outline

Hamiltonian 
Truncation

H =
h1,1 … h1,n
⋮ ⋮

hn,1 … hn,n

e−iHt

e+

e−

t

P(t)

1 We compute the probability that the Schwinger Model QFT remains
in its ground state following a quantum quench.

2 We use Hamiltonian Truncation to generate an approximate
Hamiltonian for our system of low dimensionality. I will be explicit
about the truncation we use.

3 We use an IBM quantum device to determine how this probability
evolves with time.
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Method Overview

Hamiltonian Setup

H = H0 + V (1)

• H0 is an exactly solvable Hamiltonian

• V represents a new interaction, which may be strong.

• Work in the eigenbasis of H0. Truncate so that only a finite number
of states with E0 ≤ ET are included in the basis.

• Diagonalize numerically to calculate spectrum and wavefunctions.

• Has been applied to a variety of QFTs including 2d QCD. See [Konik

et al ’17], [Katz, Fitzpatrick ’22] for overviews.
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A Simple Example: The Anharmonic Oscillator

Take the quantum mechanical model

H =
p2 + x2

2
+ λx4 . (2)

Decompose the Hamiltonian so that H0 is the SHO and V = λx4. Work in
the SHO eigenbasis: H0 |n⟩ = (n + 1/2) |n⟩

• Truncate basis to include states
|n⟩ for n + 1/2 ≤ ET .

• All energy eigenvalues are upper
bounds for the true energies due
to min-max theorem.

• Method generalises to QFTs.
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Schwinger Model

QED in 1+1 dimensions

L = −1

4
FµνF

µν + ψ̄
(
i /∂ − g /A−m

)
ψ , (3)

• Shares qualitative features with QCD including confinement, chiral
symmetry breaking, U(1)A anomaly.

• We take there to be only 1 Dirac fermion.

• Put on a circle of circumference L and use periodic boundary
conditions.

• Studied extensively using lattice gauge theory on a variety of quantum
computing platforms e.g. [P. Hauke et al ’13].
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Bosonisation

The m = 0 theory was solved exactly by Schwinger. It is a theory of
confined, noninteracting, pseudoscalar mesons.

H0 =
1

2

∫ L

0
dx : Π2 + (∂xϕ)

2 +
g2

π
ϕ2 : , (4)

The scalar has mass M = g/
√
π. Bosonisation helpfully removes gauge

redundant d.o.fs. Normal ordering in (4) removes UV divergences.

When m ̸= 0, the theory becomes interacting

V = −2cmM

∫ L

0
dx : cos

(√
4πϕ+ θ

)
: , (5)

chiral symmetry is broken, and the θ parameter becomes physical, but we
only consider θ = 0 here.
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Basis States

Quantise the massive scalar field on the circle

ϕ(x) =
∞∑

n=−∞

1√
2LEn

(
an e

iknx + a†n e
−iknx

)
. (6)

where the n represent the different momentum modes on the circle
kn = 2πn/L.

Work in eigenbasis of H0

|{r}⟩ =
n=∞∏
n=−∞

1√
rn!

(
a†n

)rn |0⟩ , (7)

which is the usual Fock basis.
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Truncation

List the states in order of increasing H0 eigenvalue and take the first 2nq

states from this list.

This is not a local truncation - different from the lattice.

For instance, with nq = 2 and gL = 8, the states we would retain are

|0⟩ , 1√
2

(
a†0

)2
|0⟩ , a†1a

†
−1 |0⟩ ,

1√
4!

(
a†0

)4
|0⟩ . (8)

These states form our computational basis for quantum computing.
Calculate matrix elements

Vr, r′ =
〈
{r′}

∣∣ : cos (√4πϕ) : |{r}⟩ (9)

between these states. Gives H as a 2nq × 2nq matrix
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Qubit Resources for Simulating Scalar Field Theory

To simulate a collision with energy√
s, the max energy state in the

truncated basis in HT Emax, or the
lattice spacing should be

√
s ≪ Emax ≈ 1/a

The number of qubits needed for
lattice formulation:

N lattice
q = nlatticeq (L/a)

[Klco and Savage ’18]

Figure: Comparing qubits needed for the
lattice and HT formulations of scalar
field theory, with nlatticeq = 3, ML = 8.
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Sanity Check

Numerical estimates for particle masses converge to known results as
(qubit number nq) is increased

0.0 0.2 0.4 0.6 0.8 1.0
mf/g

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

V
/g

PT

nq = 5

nq = 10

MPS

HT data taken at gL = 8. PT = second order perturbation theory in
infinite volume. MPS = matrix product states M. Bañuls et al ’13.
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Quantum Quench

We consider the time dependence of the probability that the Schwinger
model stays in its m = 0 vacuum state, following a quantum quench to
m/g = 0.2.

G (t) =
〈
0
∣∣∣e−iHt

∣∣∣ 0〉 , P(t) = |G (t)|2 . (10)

This particular probability cannot be computed without state preparation
in Kogut-Susskind lattice formulation of the Schwinger model.

These routines can be extremely costly. The resources required to
implement the state-preparation for an arbitrary state can scale
exponentially [Sun et al ’23].
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Time Evolution Converges

0 1 2 3 4
g t

0.825
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|G
(t

)|2
nq = 2

nq = 4

nq = 6

nq = 8

nq = 10

• The vacuum survival probability converges as nq → ∞.

• Already at nq = 2, we get a reasonable approximation to the
continuum time evolution. We are within 5% of the nq = 10 result.

• This is a classical calculation.
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Pauli Decomposition

To do the calculation on a NISQ device, we decompose the Hamiltonian as

H =
3∑

i1...inq=0

αi1...inq

(
σi1 ⊗ · · · ⊗ σinq

)
(11)

Any Hermitian matrix can be decomposed this way to yield real
coefficients αi1...inq .

For a generic dense Hamiltonian matrix, there will be ∼ 4nq nonzero
coefficients in this decomposition.
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Trotterisation

We use the Trotter-Suzuki approximation to first order. Error ∼ O(t2/n).

|ψ(t)⟩ = e−iHt |ψ(0)⟩ ≈

 ∏
i1,...,inq

e
−i t

n
αi1,...,inq

(
σi1

⊗···⊗σinq

)n

|ψ(0)⟩ . (12)

The exponential of each Pauli term can be implemented on a qubit-based
quantum device through a short sequence of single-qubit rotation gates
and cnot gates.

The number of gates needed per trotter step grows with the number of
nonzero αi1...inq coefficients. This is exponential growth.
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Trotter Error
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Figure: Blue curves are for nq = 2 and yellow for nq = 6.

We will use gt/n = gδt = 0.3 for nq = 2 on the quantum device.
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Quantum Hamiltonian Truncation
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Figure: Time evolution of the Schwinger model via HT run on the ibm brisbane
127-qubit quantum computer (though we only use 2 of them). The results are
enhanced using error mitigation and suppression routines through Qiskit and
Q-Ctrl.
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Summary and Conclusion

1 We demonstrate the viability of using HT to facilitate the
non-perturbative, real-time simulation of QFTs on NISQ devices.

2 We compute the time dependence of the vacuum survival probability
|G (t)|2 in the Schwinger model on a real quantum computer.

3 HT was able to give fairly accurate results with a very small
Hamiltonian.

4 Our approach did not require initial state prep, because HT gave us
the freedom to pick a ’good’ computational basis.

5 The tools we used could be applied to many other QFTs and
observables - there are many other exciting applications to explore!
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Backup

What QFTs Have Been Studied Using HT?

An incomplete selection of studies, with an hep-th focus: Please see [Konik

et al ’17], [Katz, Fitzpatrick ’22] for a more complete review.

In 2 dimensions
• Minimal model CFT deformed with relevant primary operator
[Yurov, Zamolodchikov ’89]...

• SU(3) gauge theory with fundamental Dirac fermions on the
lightcone [Hornbostel, Brodsky, Pauli ’90]...

• ϕ4 deformation of massive scalar field [Rychkov, Vitale ’14]...
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et al ’17], [Katz, Fitzpatrick ’22] for a more complete review.

In 3 dimensions

• ϕ2 + iϕ3 deformation of free scalar CFT on S3 [Hogervorst ’18]...

• ϕ4 deformation of massive scalar on R × T 2 [Elias-Miró, Hardy ’18]...
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