

Building quantum event generators through sparse Fock representations Yutaro liyama ICEPP, The University of Tokyo

QT4HEP January 23, 2025

Event generator in a nutshell

Process description

- Incoming particles
- Primary outgoing particles
- Kinematic constraints
- Algorithm
- Precision
- etc.

Event generator

- Knows how to calculate the $d\sigma/d\Omega$
 - of the desired process
- Computes $\sigma = \int (d\sigma/d\Omega) d\Omega$
- Samples four-vectors according to $dP(\Omega) = (d\sigma/d\Omega)d\Omega/\sigma$

"one of the computational pillars of any HEP experiment" (<u>HEP Software Foundation review</u>)

Many, many events Lists of stable particles and their four-vectors

Current event generators suffer from fundamental scaling problems:

Event complexity scales ~factorially with perturbation order

10⁸

Integration time scales ~exponentially with final ullet

LO ME level event generation only (Comix; $\gamma, Z, h, \mu, \nu_{\mu}, \tau, \nu_{\tau}$ off)

incoming

quarks

 $\sigma =$

7

Numbers generated on dual 8-core Intel[®] Xeon[®] E5-2660 @ 2.20GHz

 *,† Number of guarks limited to <6/4

Source: Schultz 2018

M. Gross

Current event generators suffer from fundamental scaling problems:

- Event complexity scales ~factorially with perturbation order
- Integration time scales \sim exponentially with final-state multiplicity \bullet

Timing and memory usage (Sherpa 3.x.y + HDF5)

 *,† Number of guarks limited to <6/4

Source: Schultz 2018

4

Charged particle multiplicity in pp collisions (PLB 758 67)

 10^{4}

√*s* [GeV]

 10^{3}

Current event generators suffer from fundamental scaling problems:

- Event complexity scales ~factorially with perturbation order
- Integration time scales ~exponentially with final-state multiplicity Inefficiencies are also problems:
- Sampling = variant of hit-and-miss. $d\sigma/d\Omega$ variance $\uparrow \Rightarrow$ hit efficiency \downarrow Ref: Eff(W+4jets @ $\sqrt{s}=13TeV$) = 0.1%
- "Sign problem": Events at \geq NLO in QCD can have negative weights

Current event generators suffer from fundamental scaling problems:

- Event complexity scales ~factorially with perturbation order
- Integration time scales ~exponentially with final-state multiplicity Inefficiencies are also problems.
- Sampling = variant of hit-and-miss. $d\sigma/d\Omega$ variance $\uparrow \Rightarrow$ hit efficiency \downarrow Ref: Eff(W+4jets @ $\sqrt{s}=13TeV$) = 0.1%
- "Sign problem": Events at \geq NLO in QCD can have negative weights

All difficulties are consequences of simulating a quantum system with classical computers

Real-time dynamics simulation + shot-by-shot sampling:

Real-time dynamics simulation + shot-by-shot sampling:

Which is, incidentally, how quantum computation works:

* If based on the quantum circuit model of quantum computing

Real-time dynamics simulation + shot-by-shot sampling:

Which is, incidentally, how quantum computation works:

* If based on the quantum circuit model of quantum computing

Real-time dynamics simulation + shot-by-shot sampling:

Which is, incidentally, how quantum computation works:

* If based on the quantum circuit model of quantum computing

Ingredients of a quantum event generator

measurement results

Repeating Christian's talk... Encoding field states: discretization

- Continuous (infinite) space $V = \int dx$
- Continuous unbounded field value ϕ

$$\Rightarrow \mathscr{H} = \operatorname{span}\left(\left\{ \left|\phi\right\rangle \middle|\phi \in \mathbb{R}\right\}\right)^{\otimes \int dx}$$

 $(\operatorname{span}(\{|0\rangle, |1\rangle\})$ for fermions)

- Discrete finite lattice $N = L^d$

 $\Rightarrow \mathscr{H} = \operatorname{span}\left(\left\{|0\rangle, |1\rangle, \dots |K-1\rangle\right\}\right)^{\otimes N}$

Discretization parameters determine the expressible dynamic range:

- $p_{\rm max}/p_{\rm min} \sim L$
- $\phi_{\max}/\phi_{\min} \sim K$

• Discrete truncated field values $0, 1, \dots, K-1$

Repeating Christian's talk. 10 Field-based encoding is infeasible

Use an *n*-bit quantum register per lattice point per field: $|\text{system}\rangle = |j_1\rangle \otimes |j_2\rangle \otimes \cdots \otimes |j_N\rangle \ (j_i = 0, \dots, 2^n - 1)$ Field value at site 1

Can also encode a Fock representation: $|\text{system}\rangle = |k_{p_1}\rangle \otimes |k_{p_2}\rangle \otimes \cdots \otimes |k_{p_N}\rangle \ (k_{p_i} = 0, \dots, 2^n - 1)$

Number of excitations of mode p₁

 \Rightarrow Qubit count: nL^d

For $p_{\text{max}}/p_{\text{min}} = 10$ TeV / 100 MeV = 10⁵ and d = 3 we need ~ $10^{15}n$ qubits

Alternative: Particle-based encoding

Assign a quantum register to each particle, maximum M particles → Field theory as multi-body quantum mechanics

$$|\text{system}\rangle = \mathcal{S}|p_1...p_J\Omega...\Omega\rangle$$

J occupied slots M-J unoccupied slots

Symmetrization (bosons) or antisymmetrization (fermions)

Slater determinant

Essentially, a sparse Fock representation

\Rightarrow Qubit count: $M(d \log_2 L)$

For $p_{\rm max}/p_{\rm min} = 10^5$ and d = 3 we need ~ 50M qubits

Constructing field operators

 $a_p \mathcal{S}|p_1...p_1...p_J \Omega...\Omega\rangle = \sqrt{n_p} \mathcal{S}|p_1...p_J \Omega\Omega...\Omega\rangle$

Annihilation operator de-occupies one slot.

 $a_q \mathcal{S}|p_1 \dots p_J \Omega \dots \Omega\rangle = 0 \quad (q \notin \{p_j\}_j)$

or annihilates the ket if no matching occupied slot exists.

$$a_q^{\dagger} \mathcal{S} | p_1 \dots p_J \Omega \Omega \dots \Omega \rangle = \sqrt{n_q + 1} \mathcal{S} | p_1 \dots p_J q \Omega \dots \Omega \rangle$$

Creation operator fills one slot.

 $a_q^{\dagger} \mathcal{S} | p_1 \dots p_M \rangle = 0$

or annihilates the ket if it is maximally filled.

All operators can be expressed with combinations of a and a^{\dagger} \Rightarrow Figure out the implementation of \mathcal{S} , a, and $a^{\dagger}!$

Proposed implementations

• Barata et al. (PRA 103, 2021)

$$\begin{split} \mathcal{S}|p_1...p_J\,\Omega...\Omega\rangle &= \frac{1}{\sqrt{\mathcal{N}}} \sum_{P \in \text{perm}(M)} |P(p_1...p_J\,\Omega...\Omega)\rangle \\ a_p^{\dagger} &= \frac{1}{\sqrt{M}} \sum_j a_p^{\dagger(j)} \text{ where } a_p^{\dagger(j)} \text{ creates a particle in regist} \end{split}$$

• Gálves-Viruet and Llanes-Estrada (arXiv 2406.03147)

$$\begin{split} \mathcal{S}|p_1...p_J\Omega...\Omega\rangle &= \frac{1}{\sqrt{\mathcal{N}}} \sum_{P \in \text{perm}(J)} \sigma_P|P(p_1...p_J)\Omega...\Omega\\ a_p^{\dagger} &= \sum_j \mathcal{T}_{j \leftarrow (j-1)} a_p^{\dagger(j)} \text{ where } a_p^{\dagger(j)} \text{ creates a particle in and } \mathcal{T}_{j \leftarrow (j-1)} \text{ is a "step (anti)start} \end{split}$$

13

Only for bosons

sterj

$\Omega \rangle$ Sign of P n register j

symmetrizer"

Event synopsis

- State preparation = Create wave packets $\sum_{\mathbf{p}_0,\mathbf{p}_1} \Psi_0(\mathbf{p}_0) \Psi_1(\mathbf{p}_1) \mathcal{S} |\mathbf{p}_0\mathbf{p}_1 \Omega \dots \Omega \rangle$
- Evolution in three time windows
 - $0 < t < t_1$: Adiabatic transition to physical single-particle states $H(t) = H_0 + f(t) H_I$ with $f(0) = 0, f(t_1) = 1$
 - $t_1 < t < t_2$: Evolution with full Hamiltonian e^{-iHt} (scattering)
 - $t_2 < t < t_f$: Adiabatic transition to Fock final states
- Measurement \rightarrow Each bit string corresponds to a Fock state

14

Details in Barata et al.

Is sparse Fock simulation accurate?

Demonstration: Scattering in Schwinger model

Compare time evolution by full and truncated Hamiltonians

$$H = \sum_{n=0}^{N-1} \left[-\frac{i}{2\alpha} \left(e^{i\theta_n} \Phi_n^{\dagger} \Phi_{n+1} - \mathbf{h} \cdot \mathbf{c} \cdot \right) + (-1)^n m \Phi_n^{\dagger} \Phi_n^{\dagger} \Phi_n^{\dagger} \right]$$

Periodic boundary condition → translationally invariant → momentum eigenstates!

with

$$\Phi_{n,\text{even}} = \sqrt{\frac{2}{N}} \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \sinh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \sinh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \sinh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \sinh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \sinh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \sinh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \sinh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \sinh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right) \qquad H = \sum_{k} \frac{1}{\sqrt{\cosh w_{k}}} \left(e^{\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} a_{k} + e^{-\frac{2\pi i}{N}kn} \cosh \frac{w_{k}}{2} b_{k}^{\dagger} \right)$$

 $^{\dagger}_{n}\Phi_{n} + JL_{n}^{2}$

Incorporating Gauss'

 $\mathscr{E}_k\left(a_k^{\dagger}a_k + b_k^{\dagger}b_k\right) + J\sum L_n^2$

Sparse Fock simulation lite

After solving the Gauss' law, all dynamics are encoded in $\sum_{n} L_{n}^{2}$.

In the Fock basis, No excitations $1 e^{-1}$ with k_1 , $1 e^{+1}$ with k_2 ...

$$\sum_{n} L_n^2 = \begin{pmatrix} * & * & \cdots \\ * & * & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

 \Rightarrow Evolution in M-sparse Fock system simulated by nullifying rows and columns with $n = n^{-} + n^{+} > M$

Schwinger model scattering (12 sites)

Initial state: $|e^{-}; -k_{\max}\rangle \otimes |e^{+}; +k_{\max}\rangle$

am=0.5 $\alpha J=0.5$

1.0

0.8

0.6 _

0.4

0.2

0.0

Gaussian interaction profile

Coupling strength

Schwinger model scattering (12 sites)

- Scattering probability difference is barely visible for n_{final}=4, even with M=4
- Obviously, probability of seeing $n_{\text{final}}=6$ is 0 for M=4

 \rightarrow Sparse Fock representation viable, at least for this simple system

18

Scattering probability to most probable n = 6 state

Particle-based simulation is viable. What are the biggest questions?

- Optimality of the encoding?
 - Symmetrizers are complex & non-unitary. Any way around?
- How do we select final states?

A faithful LHC simulation will generate uninteresting events 99.999% of the time

• Circuit depth?

Interaction Hamiltonian requires $O(L^d)$ gates per time step / poly degree

And a lot more!

Conclusion

- There is a practical case for quantum-simulating QFTs in the perturbative regime too
- Quantum computers operate like event generators already
- Field-based encoding is infeasible and unnecessary
- Encoding based on sparse Fock representation is promising
- For a scattering problem in the Schwinger model, sparsity does not kill the accuracy of simulation