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Background
n Nonperturbative numerical simulation of gauge theory

▶ Lattice Gauge Theory (LGT)
n Conventional calculation: Monte Carlo method

n In some systems, 𝑒!"!($")/𝑍 becomes complex
▶ Hard to compute precisely … Sign problem
▶ Need to consider alternative calculation method
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Regularization
▶ Regard this as probability

▶ Do Monte Carlo

Example of sign problem:
l Real-time dynamics
l Finite density system 
l Topological term



Hamiltonian formulated LGT

Hamiltonian formulated LGT
n Compute Hilbert space directly
✓Free from sign problem              
✕ Increase computational resources exponentially for system sizes...?
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▶ Quantum computers have potential to overcome!
(※Tensor network also has)



Towards quantum computation of gauge fields
n Quantum states of gauge fields have infinite D.O.F. 
▶ Truncation is necessary to implement on classical/quantum computer
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Previous works on formulation
n Important to choose bases with large contribution
n Important to reduce the size of Hilbert space by utilizing Gaussʼ law

Example of Previous works
l R/B formulation [J. F Haase et al., 2021]

p Canonical Commutation Relation (CCR) method [C. W. Bauer, D. M. Grabowska, 2023 ]

l Kogut-Susskind [J. Kogut, L. Susskind, 1975][T. Byrnes, Y, Yamamoto, 2006]

l Loop-String-Hadron [I. Raychowdhury, J. R. Stryker, 2020]

l Quantum link model [U. J. Wiese, 2013]

l Quantum group [T. V. Zache et al., 2023]

l Orbifolds [A. J Buser et al., 2021]
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l Spin-dual [Mathur et al., 2016]

l Fuzzy fields [Alexandru et al., 2024]

l Light-Front [Kreshchuk et al., 2020]
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l Spin-dual [Mathur et al., 2016]

l Fuzzy fields [Alexandru et al., 2024]

l Light-Front [Kreshchuk et al., 2020]

Utilize this method later



Optimization of digitization of quantum states
Canonical Commutation Relation (CCR) method
n One of the way to optimize quantum states with magnetic basis

▶ The paper focuses on optimization of low-lying states
in pure (non-)compact (2+1)-dimensional U(1) LGT
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[C. W. Bauer, D. M. 
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Optimization of digitization of quantum states
Canonical Commutation Relation (CCR) method
n One of the way to optimize quantum states with magnetic basis

▶ The paper focuses on optimization of low-lying states
in pure (non-)compact (2+1)-dimensional U(1) LGT

▶ What about excited states? i.e. finite temperature 𝑇 ≠ 0
※ For example, we need to consider thermal properties to simulate

finite density systems
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Optimization of digitization of quantum states
Canonical Commutation Relation (CCR) method
n One of the way to optimize quantum states with magnetic basis

▶ The paper focuses on optimization of low-lying states
in pure (non-)compact (2+1)-dimensional U(1) LGT

▶ What about excited states? i.e. finite temperature 𝑇 ≠ 0
※ For example, we need to consider thermal properties to simulate

finite density systems
n In this work, we focus on efficient basis choice under 𝑇 ≠ 0
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[C. W. Bauer, D. M. 
Grabowska, 2023]

Pure compact U(1) Compact U(1) w/. fermion
Low-lying states Previous work This work

Excited states This work This work



Contents
n Introduction

n Results
Ⅰ. Pure compact U(1)
Ⅱ. Compact U(1) including matter
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Setup
n We consider two models :

l Pure compact U(1) LGT
l Compact U(1) LGT including fermion

n For simplicity, we consider following setup:
l Four lattice points
l Periodic Boundary

condition (P.B.C.)
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P.B.C.
Plaquette 𝑝

Link 𝑛, 𝜇 (𝜇 = 𝑥, 𝑦)

Site 𝑛



Pure compact U(1) LGT
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Magnetic fields
on each plaquette

Electric fields
at each link

𝐸-,/
𝐵0



Pure compact U(1) LGT

2025/1/23 QT4HEP 14

Magnetic fields
on each plaquette

Electric fields
at each link

Reduce D.O.F. of 𝐸-,/
by utilizing Gaussʼ law

Gaussʼ law：𝛁 ⋅ 𝑬𝒏 phys = 0

Describe variables of electric fields 
in terms of independent variables on 
each plaquette called rotator fields

𝐸-,/
𝐵0

𝑅0

[S. D. Drell et al., , 1979]



n The resulting Hamiltonian:

𝑎𝐻2 = −
1
𝑔+
[cos 𝐵* + cos 𝐵+ + cos 𝐵,

+cos(𝐵* + 𝐵+ + 𝐵,)]

Pure compact U(1) LGT

2025/1/23 QT4HEP 15

𝑅3/𝐵3 can be removed by P.B.C.

𝑅3/𝐵3 𝑅,/𝐵,

𝑅*/𝐵* 𝑅+/𝐵+

𝑔: Coupling constant
𝑎: Lattice spacing

𝐻 = 𝐻4
(5678) +𝐻2

𝑎𝐻4
(5678) = 2𝑔+[𝑅*+ + 𝑅++ + 𝑅,+ − 𝑅* 𝑅+ + 𝑅, ]



Pure compact U(1) LGT
n Eigenvalues of 𝐵 fields are 

compactified (−𝜋, 𝜋]

n 𝑅 and 𝐵 hold Canonical Commutation
Relation (CCR):

𝐵0, 𝑅0# = 𝑖𝛿0,09

n We take 𝑎 = 1
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𝑅3/𝐵3 can be removed by P.B.C.

𝑅3/𝐵3 𝑅,/𝐵,

𝑅*/𝐵* 𝑅+/𝐵+

𝑔: Coupling constant
𝑎: Lattice spacing



Naive truncation method
n Consider representing those fields by finite dimensional matrices
n Naively, we can discretize those fields by equidistant points:
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𝑏
𝜋−𝜋

…

Interval of discretization
Δ = 2𝜋/𝑁

Divide field values with 𝑁 equidistant points

𝐵 = '
!:

:
𝑑𝑏 𝑏|𝑏⟩⟨𝑏| → V𝐵 =*

;

𝑏; 𝑏; 𝑏; , 𝑏; = 𝑗
2𝜋
𝑁

(𝑗 = − 𝑁 /2,… , 𝑁 /2)

n 𝑁 is related to number of 
qubits to do simulation

n By 𝑁 → ∞, theory after 
truncation returns to 
original theory

𝑁: Discretization points



Naive truncation method
n Consider representing those fields by finite dimensional matrices
n Naively, we can discretize those fields by equidistant points:

n By discrete Fourier transformation, 𝑅 is given by
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Canonical Commutation Relation method
CCR method
n CCR method is the method which optimize interval of gauge fields Δ
n We define loss function regarding CCR violation of ground states:

𝐿(Δ) ≡ *
0∈𝓅

| ΨD.F. V𝐵0, V𝑅0 − 𝑖 ΨD.F. |

n We obtain Δ to minimize this loss function:
a

Δ∗ = argmin
H

𝐿(Δ)
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[C. W. Bauer, D. M. Grabowska, 2023]

V𝐵0/ V𝑅0：Magnetic/Rotator operator after discretization at each plaquette
|ΨD.F.⟩：Ground state obtained by diagonalizing discretized Hamiltonian



Comparison of both methods
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𝑏
𝜋−𝜋

…
Δ is fixed as 2𝜋/𝑁

𝑏
𝜋−𝜋

…

0 0

【CCR method】 【Naive truncation method】

l CCR method can represent sharp wavefunction better than naive 
truncation method

l When 𝑔 → 0, contribution of magnetic Hamiltonian becomes dominant
▶ Wavefunction becomes sharper with small 𝑔
▶ Anticipated that CCR method is effective in the region of small 𝑔

Optimize Δ



Loss function and errors of energy spectrums
n In low-lying levels, CCR method 

optimize energy spectrums 
(consist with previous work)
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【Low-lying levels】

𝐸!: Numerical values by CCR 
method with 𝑁 = 6

𝐸!"#$%: Converged values by Naive 
truncation method with large 𝑁

This Δ is equivalent with Naive truncation method



Loss function and error of energy spectrums
n In excited levels, optimized Δ

moves to larger values

n Excited states becomes more 
spread out

▶ Need to take gauge fields in 
wider range
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【Excited levels】



Thermal observables
n As a benchmark for calculation of 

thermal observables, we compute 
thermal expectation value of energy 
density:
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ℎ % ≔ tr(𝐻𝑒!%#)/𝑉



Thermal observables
n As a benchmark for calculation of 

thermal observables, we compute 
thermal expectation value of energy 
density:
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ℎ % ≔ tr(𝐻𝑒!%#)/𝑉

High temperature region
n Both methods did not converge
n Contribution of excited states becomes 

dominant
▶ Figure indicates that both truncation is 

insufficient to represent quantum states



Thermal observables
n As a benchmark for calculation of 

thermal observables, we compute 
thermal expectation value of energy 
density:
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ℎ % ≔ tr(𝐻𝑒!%#)/𝑉

Low temperature region
n CCR method shows better convergence 

compared with naive truncation method
n Indicates that we can simulate gauge fields 

with less qubits



Compact U(1) LGT including fermion
n Hamiltonian:
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𝐻 = 𝐻4
(IJKK87) +𝐻2 +𝐻L +𝐻M

Electric Hamiltonian is modified 
by the change of Gaussʼ law:

(𝛁 ⋅ 𝑬𝒏 − 𝑞𝒏) phys = 0

Mass term of fermion



Compact U(1) LGT including fermion
n Hamiltonian:
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𝐻 = 𝐻4
(IJKK87) +𝐻2 +𝐻L +𝐻M

Interaction between 
gauge fields and fermion



Compact U(1) LGT including fermion
n Hamiltonian:

n We take staggered fermion

addition to fermion, we need to consider
string operators: 𝑅N/O
conjugate of string fields: 𝐵N/O

They also satisfy CCR: 𝐵/, 𝑅P = 𝑖𝛿/,P (𝜇, 𝜈 = 1, 2, 3, 𝑥, 𝑦)

After discretization, size of Hamiltonian: 𝑁Q×23
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𝐻 = 𝐻4
(IJKK87) +𝐻2 +𝐻L +𝐻M

Ψ(),)) Ψ(*,))

Ψ(),*) Ψ(*,*)

●：Matter
●：Anti matter

{Ψ-
R, Ψ-#} = 𝛿-,-9



Compact U(1) LGT including fermion
n Hamiltonian:

n We take staggered fermion

n In addition to fermion, we need to consider
l string operators: 𝑅N/O
l conjugate of string fields: 𝐵N/O

n They also satisfy CCR: 𝐵/, 𝑅P = 𝑖𝛿/,P (𝜇, 𝜈 = 1, 2, 3, 𝑥, 𝑦)

After discretization, size of Hamiltonian: 𝑁Q×23
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𝐻 = 𝐻4
(IJKK87) +𝐻2 +𝐻L +𝐻M

Ψ(),)) Ψ(*,))

Ψ(),*) Ψ(*,*)

●：Matter
●：Anti matter

{Ψ-
R, Ψ-#} = 𝛿-,-9

𝑅N/𝐵N

𝑅O/𝐵O



Loss function and errors of energy spectrums

n Extend loss function to optimize 
string operators:

n In this parameter, CCR method 
optimize low-lying states
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𝑚: Coefficient of 𝐻&
𝜅: Coefficient of 𝐻'

𝐿(Δ) ≡ 7
"(),+,,,-,.

| Ψ/.1. :𝐵" , :𝑅" − 𝑖 Ψ/.1. |



Thermal expectation value of energy density
n CCR method shows better 

convergence than naive truncation 
method regarding with ℎ S

n Indicates that CCR methods tell 
better representation of quantum 
states under 𝑇 ≠ 0
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Conclusion
Summary
n In both theories, CCR method shows better convergence about thermal 

observables than naive truncation method

Future direction
n Extend to larger systems
n Extend to non-abelian theory
n Implement quantum algorithms ▶ Observe physical quantities
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Appendix
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Why do we consider (2+1)-dimensional theory?
n In (2+1)-dimensional LGT, D.O.F. of gauge fields remains even solving 

Gaussʼ law (constraints)
▶ Important to consider contributions of gauge fields seriously!

n In (1+1)-dimensional LGT, we can solve gauge fields D.O.F. completely 
under periodic boundary condition
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Details of 𝐻!
(#$%%&')

n Hamiltonian：

2025/1/23 QT4HEP 35

Electric Hamiltonian have interactions between 
rotator, string and fermion：
𝑎𝐻4

(IJKK87) = 𝑔+{2[𝑅*+ + 𝑅++ + 𝑅,+ − 𝑅*(𝑅* + 𝑅,)]
+𝑅N+ + 𝑅O+ + 𝑅* + 𝑅+ − 𝑅, 𝑅N
− 𝑅* − 𝑅+ − 𝑅, 𝑅O
−[𝑞 *,) (𝑅* + 𝑅N) + 𝑞 ),* 𝑅+ − 𝑅* + 𝑅O
+𝑞 *,* (2𝑅* − 𝑅+ + 𝑅N)]

+
𝑞 *,)
+ + 𝑞 ),*

+ + 2𝑞 *,* (𝑞 *,) + 𝑞(*,*))
2

}

𝑞(),)) 𝑞(*,))

𝑞(),*) 𝑞(*,))

𝑅N

𝑅O

𝑅N/O：string operator
𝑞-：charge operator at site 𝑛

𝐻 = 𝐻4
(IJKK87) +𝐻2

(T.) +𝐻L +𝐻M



𝐻 = 𝐻4
(IJKK87) +𝐻2 +𝐻L +𝐻M

Details of 𝐻)
n Hamiltonian：
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Interaction：

𝑒(2$

𝑒(2%

Ψ(),)) Ψ(*,))

Ψ(),*) Ψ(*,*)
𝑎𝐻L = 𝜅 [Ψ ),)

R 1 + 𝑒(2$ Ψ *,)

+Ψ ),*
R 𝑒(2& + 𝑒!(2'𝑒(2$ Ψ *,*

+Ψ ),)
R 1 + 𝑒(2% Ψ ),*

+Ψ *,)
R 1 + 𝑒!(2'𝑒!(2(𝑒(2% Ψ *,* + H. c. ]

𝜅 = 1/2



Details of 𝐻* and 𝐻+
n Hamiltonian：
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Magnetic Hamiltonian：

𝑎𝐻2
(T.) = −

1
𝑔+
[cos 𝐵* + cos 𝐵+ + cos 𝐵,

+cos(𝐵* + 𝐵+ + 𝐵,)]
∝ 𝒪(1/𝑔+)

𝐻 = 𝐻4
(IJKK87) +𝐻2

(T.) +𝐻L +𝐻M

Mass term：

∝ 𝒪(𝑚)

𝑎𝐻M = 𝑚[Ψ ),)
R Ψ ),) −Ψ ),*

R Ψ ),*

+Ψ *,*
R Ψ *,* −Ψ *,)

R Ψ *,) ]



Why do we compute expectation values with ground states?

n Numerical computations in Quantum Harmonic Oscillator indicate that 
we cannot optimize adequately by taking expectation values with  
excited states
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Loss function
n Eigenvalues of magnetic operators are compactified (−𝜋, 𝜋]
▶ Possibility that range of magnetic fields goes beyond 2𝜋 after

optimization
▶ In this case, we respect the 2𝜋 range of magnetic fields, that is,

Δ = min{Δ∗, 2𝜋/𝑁}

※In the case of Δ = 2𝜋/𝑁，discretized Hamiltonian by CCR method 
becomes equivalent with truncated KS method
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Δ∗：Δ obtained by optimizing 𝐿(Δ)



Error at each level in pure compact U(1) LGT
n Error at each level in pure compact U(1) LGT by CCR method

n Errors increase exponentially
with increase of levels
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Check convergence of 𝐸,-./0

n 𝐸-
(?): Energy spectrums obtained by Exact Diagonalization of

Hamiltonian after discretization with 𝑁 discretization points

n Define “convergence of 𝐸-
(?) with precision 𝛿” as differences between 

energy spectrums with 𝑁 − 1 and with 𝑁 is smaller than 𝛿, that is,

𝐸-
?!* − 𝐸-

(?)

𝐸-
(?) < 𝛿

n We take 𝛿 = 10!,
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Calculation of thermal observables in compact U(1) with fermion

n Difficult to compute all eigenvalues due to huge size of matrices
n We compute ℎ S

(?)*+,--) :

ℎ S
(?)*+,--) =

1
𝑉
∑-=)
?)*+,--!*𝐸-𝑒!S4.

∑-=)
?)*+,--!* 𝑒!S4.

where 𝑁U6KVWW is cutoff level
n We regard ℎ S

(?)*+,--) to ℎ S with precision 𝛿 if
ℎ S

?)*+,--!* − ℎ S
(?)*+,--)

ℎ S
(?)*+,--)

< 𝛿

n We take 𝛿 = 10!,
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