Efficient Encoding of Quantum States for Hamiltonian Simulation of (2+1)-dimensional U(1) Lattice Gauge Theory with Finite Temperature

Reita Maeno/International Center for Elementary Particle Physics (ICEPP), University of Tokyo

A work in progress with Koji Terashi, Lento Nagano, Sanmay Ganguly, Yasuyuki Okumura, Yutaro Iiyama

Background

- Nonperturbative numerical simulation of gauge theory
 Lattice Gauge Theory (LGT)
- Conventional calculation: Monte Carlo method

Regularization

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \, \mathcal{O}e^{-S_E(\phi)} \qquad \triangleright \qquad \sum_{\{\phi_i\}} \mathcal{O}_i \frac{e^{-S_E(\phi_i)}}{Z}$$

Regard this as probability▶ Do Monte Carlo

- In some systems, $e^{-S_E(\phi_i)}/Z$ becomes complex
- ► Hard to compute precisely … Sign problem
- ▶ Need to consider alternative calculation method

Example of sign problem:

- Real-time dynamics
- Finite density system
- Topological term

Hamiltonian formulated LGT

- Compute Hilbert space directly
- ✓ Free from sign problem

× Increase computational resources exponentially for system sizes...?

Hamiltonian formulated LGT

- Compute Hilbert space directly
- ✓ Free from sign problem

× Increase computational resources exponentially for system sizes...?

Quantum computers have potential to overcome!
 (※Tensor network also has)

Towards quantum computation of gauge fields

- Quantum states of gauge fields have infinite D.O.F.
- ▶ Truncation is necessary to implement on classical/quantum computer

Previous works on formulation

- Important to choose bases with large contribution
- Important to reduce the size of Hilbert space by utilizing Gauss' law

Example of Previous works

- R/B formulation [J. F Haase et al., 2021]
 - Canonical Commutation Relation (CCR) method [C. W. Bauer, D. M. Grabowska, 2023]
- Kogut-Susskind [J. Kogut, L. Susskind, 1975][T. Byrnes, Y, Yamamoto, 2006]
- Loop-String-Hadron [I. Raychowdhury, J. R. Stryker, 2020]
- Quantum link model [U. J. Wiese, 2013]
- Quantum group [T. V. Zache et al., 2023]
- Orbifolds [A. J Buser et al., 2021]

- Light-Front [Kreshchuk et al., 2020]
- Fuzzy fields [Alexandru et al., 2024]
- Spin-dual [Mathur et al., 2016]

Previous works on formulation

- Important to choose bases with large contribution
- Important to reduce the size of Hilbert space by utilizing Gauss' law

Example of Previous works

• R/B formulation [J. F Haase et al., 2021]

Utilize this method later

- Canonical Commutation Relation (CCR) method [C. W. Bauer, D. M. Grabowska, 2023]
- Kogut-Susskind [J. Kogut, L. Susskind, 1975][T. Byrnes, Y, Yamamoto, 2006]
- Loop-String-Hadron [I. Raychowdhury, J. R. Stryker, 2020]
- Quantum link model [U. J. Wiese, 2013]
- Quantum group [T. V. Zache et al., 2023]
- Orbifolds [A. J Buser et al., 2021]

- Light-Front [Kreshchuk et al., 2020]
- Fuzzy fields [Alexandru et al., 2024]
- Spin-dual [Mathur et al., 2016]

Optimization of digitization of quantum states

Canonical Commutation Relation (CCR) method [C. W. Bauer, D. M. Grabowska, 2023]

- One of the way to optimize quantum states with magnetic basis
 - The paper focuses on optimization of **low-lying states** in pure (non-)compact (2+1)-dimensional U(1) LGT

Optimization of digitization of quantum states

Canonical Commutation Relation (CCR) method [C. W. Bauer, D. M. Grabowska, 2023]

- One of the way to optimize quantum states with magnetic basis
 - The paper focuses on optimization of **low-lying states** in pure (non-)compact (2+1)-dimensional U(1) LGT
 - What about **excited states**? i.e. finite temperature $T \neq 0$
 - ※ For example, we need to consider thermal properties to simulate finite density systems

Optimization of digitization of quantum states

Canonical Commutation Relation (CCR) method [C. W. Bauer, D. M. Grabowska, 2023]

- One of the way to optimize quantum states with magnetic basis
 - The paper focuses on optimization of **low-lying states** in pure (non-)compact (2+1)-dimensional U(1) LGT
 - What about **excited states**? i.e. finite temperature $T \neq 0$
 - ※ For example, we need to consider thermal properties to simulate finite density systems
- In this work, we focus on efficient basis choice under $T \neq 0$

	Pure compact U(1)	Compact U(1) w/. fermion
Low-lying states	Previous work	This work
Excited states	This work	This work

Contents

Introduction

Results I. Pure compact U(1) II. Compact U(1) including matter

Setup

- We consider two models :
 - Pure compact U(1) LGT
 - Compact U(1) LGT including fermion
- For simplicity, we consider following setup:
 - Four lattice points
 - Periodic Boundary condition (P.B.C.)

Gauss' law : $\nabla \cdot E_n$ | phys $\rangle = 0$

g: Coupling constant *a*: Lattice spacing

The resulting Hamiltonian:

$$H = H_E^{(\text{pure})} + H_B$$

$$aH_E^{(\text{pure})} = 2g^2[R_1^2 + R_2^2 + R_3^2 - R_1(R_2 + R_3)]$$

$$aH_B = -\frac{1}{g^2}[\cos(B_1) + \cos(B_2) + \cos(B_3) + \cos(B_1 + B_2 + B_3)]$$

$$R_4/B_4$$
 can be removed by P.B.C. R_4/B_4 R_3/B_3 R_1/B_1 R_2/B_2

- fields are
- Eigenvalues of *B* fields are compactified $(-\pi, \pi]$
- *R* and *B* hold Canonical Commutation Relation (CCR):

$$\left[B_{p},R_{p'}\right]=i\delta_{p,p'}$$

• We take a = 1

Naive truncation method

- Consider representing those fields by finite dimensional matrices
- Naively, we can discretize those fields by equidistant points:

$$B = \int_{-\pi}^{\pi} db \, b | b \rangle \langle b | \to \tilde{B} = \sum_{j} b_{j} | b_{j} \rangle \langle b_{j} |, \qquad b_{j} = j \frac{2\pi}{N} (j = -\lfloor N \rfloor / 2, \dots, \lfloor N \rfloor / 2)$$

N: Discretization points

Divide field values with N equidistant points

- N is related to number of qubits to do simulation
- By N → ∞, theory after truncation returns to original theory

Naive truncation method

- Consider representing those fields by finite dimensional matrices
- Naively, we can discretize those fields by equidistant points:

$$B = \int_{-\pi}^{\pi} db \ b |b\rangle \langle b| \to \tilde{B} = \sum_{j} b_{j} |b_{j}\rangle \langle b_{j}|, \qquad b_{j} = j \frac{2\pi}{N} \ (j = -\lfloor N \rfloor/2, \dots, \lfloor N \rfloor/2)$$

By discrete Fourier transformation, *R* is given by

$$R = \sum_{m=-\infty}^{\infty} r_m |r_m\rangle \langle r_m| \to \tilde{R} = \sum_{m=-\lfloor N \rfloor/2}^{\lfloor N \rfloor/2} r_m |r_m\rangle \langle r_m|$$
$$= \sum_{m=-\lfloor N \rfloor/2}^{\lfloor N \rfloor/2} m(\frac{1}{\sqrt{N}} \sum_j e^{i\frac{2\pi}{N}jm} |b_j\rangle) (\frac{1}{\sqrt{N}} \sum_k e^{-i\frac{2\pi}{N}km} \langle b_k|)$$

Canonical Commutation Relation method

CCR method [C. W. Bauer, D. M. Grabowska, 2023]

- \blacksquare CCR method is the method which optimize interval of gauge fields Δ
- We define loss function regarding CCR violation of ground states:

$$L(\Delta) \equiv \sum_{p \in \mathcal{P}} |\langle \Psi_{\text{G.S.}} | [\tilde{B}_p, \tilde{R}_p] - i | \Psi_{\text{G.S.}} \rangle|$$

 \tilde{B}_p/\tilde{R}_p : Magnetic/Rotator operator after discretization at each plaquette $|\Psi_{G.S.}\rangle$: Ground state obtained by diagonalizing discretized Hamiltonian

• We obtain Δ to minimize this loss function:

$$\Delta^* = \underset{\Delta}{\operatorname{argmin}} L(\Delta)$$

Comparison of both methods

- CCR method can represent sharp wavefunction better than naive truncation method
- When $g \rightarrow 0$, contribution of magnetic Hamiltonian becomes dominant
- \blacktriangleright Wavefunction becomes sharper with small g
- \blacktriangleright Anticipated that CCR method is effective in the region of small g

Loss function and errors of energy spectrums

[Low-lying levels]

 In low-lying levels, CCR method optimize energy spectrums (consist with previous work)

 E_n : Numerical values by CCR method with N = 6 E_n^{conv} : Converged values by Naive truncation method with large N

This Δ is equivalent with Naive truncation method

QT4HEP

Loss function and error of energy spectrums

- In excited levels, optimized Δ moves to larger values
- Excited states becomes more spread out
- Need to take gauge fields in wider range

Thermal observables

 As a benchmark for calculation of thermal observables, we compute thermal expectation value of energy density:

$$\langle h \rangle_{\beta} \coloneqq \operatorname{tr}(He^{-\beta H})/V$$

Thermal observables

 As a benchmark for calculation of thermal observables, we compute thermal expectation value of energy density:

$$\langle h \rangle_{\beta} \coloneqq \operatorname{tr}(He^{-\beta H})/V$$

High temperature region

- Both methods did not converge
- Contribution of excited states becomes dominant
- Figure indicates that both truncation is insufficient to represent quantum states

Thermal observables

 As a benchmark for calculation of thermal observables, we compute thermal expectation value of energy density:

$$\langle h \rangle_{\beta} \coloneqq \operatorname{tr}(He^{-\beta H})/V$$

Low temperature region

- CCR method shows better convergence compared with naive truncation method
- Indicates that we can simulate gauge fields with less qubits

Hamiltonian:

Mass term of fermion

$$H = H_E^{(\text{matter})} + H_B + H_K + H_M$$

Electric Hamiltonian is modified by the change of Gauss' law: $(\nabla \cdot E_n - q_n)|phys\rangle = 0$

Hamiltonian:

$$H = H_E^{(\text{matter})} + H_B + H_K + H_M$$

Interaction between
gauge fields and fermior

Hamiltonian:

$$H = H_E^{(\text{matter})} + H_B + H_K + H_M$$

We take staggered fermion

$$\{\Psi_n^{\dagger}, \Psi_{n'}\} = \delta_{n,n'}$$

Hamiltonian:

$$H = H_E^{(\text{matter})} + H_B + H_K + H_M$$

We take staggered fermion

 $\{\Psi_n^{\dagger}, \Psi_{n'}\} = \delta_{n,n'}$

- In addition to fermion, we need to consider
 - string operators: $R_{x/y}$
 - conjugate of string fields: $B_{x/y}$
- They also satisfy CCR: $[B_{\mu}, R_{\nu}] = i\delta_{\mu,\nu} (\mu, \nu = 1, 2, 3, x, y)$

Loss function and errors of energy spectrums

m: Coefficient of H_M κ : Coefficient of H_K Extend loss function to optimize string operators:

$$L(\Delta) \equiv \sum_{i=1,2,3,x,y} |\langle \Psi_{\text{G.S.}} | [\tilde{B}_i, \tilde{R}_i] - i | \Psi_{\text{G.S.}} \rangle|$$

In this parameter, CCR method optimize low-lying states

Thermal expectation value of energy density

- CCR method shows better convergence than naive truncation method regarding with $\langle h \rangle_{\beta}$
- Indicates that CCR methods tell better representation of quantum states under $T \neq 0$

Conclusion

Summary

In both theories, CCR method shows better convergence about thermal observables than naive truncation method

Future direction

- Extend to larger systems
- Extend to non-abelian theory
- Implement quantum algorithms >> Observe physical quantities

Appendix

Why do we consider (2+1)-dimensional theory?

- In (2+1)-dimensional LGT, D.O.F. of gauge fields remains even solving Gauss' law (constraints)
- Important to consider contributions of gauge fields seriously!
- In (1+1)-dimensional LGT, we can solve gauge fields D.O.F. completely under periodic boundary condition

Details of $H_E^{(matter)}$

Hamiltonian :

$$H = H_E^{(\text{matter})} + H_B^{(\text{C.})} + H_K + H_M$$

Electric Hamiltonian have interactions between rotator, string and fermion :

$$aH_{E}^{(\text{matter})} = g^{2} \{ 2[R_{1}^{2} + R_{2}^{2} + R_{3}^{2} - R_{1}(R_{1} + R_{3})] + R_{x}^{2} + R_{y}^{2} + (R_{1} + R_{2} - R_{3})R_{x} - (R_{1} - R_{2} - R_{3})R_{y} - [q_{(1,0)}(R_{1} + R_{x}) + q_{(0,1)}(R_{2} - R_{1} + R_{y})] + q_{(1,1)}(2R_{1} - R_{2} + R_{x})] + q_{(1,1)}(2R_{1} - R_{2} + R_{x})] + \frac{q_{(1,0)}^{2} + q_{(0,1)}^{2} + 2q_{(1,1)}(q_{(1,0)} + q_{(1,1)})}{2} \}$$

 $R_{x/y}$: string operator q_n : charge operator at site n

Details of H_K

Hamiltonian :

$$\begin{split} H &= H_E^{(\text{matter})} + H_B + H_K + H_M \\ \text{Interaction}:\\ aH_K &= \kappa \left[\Psi_{(0,0)}^{\dagger} \left(1 + e^{iB_X} \right) \Psi_{(1,0)} \right. \\ &+ \Psi_{(0,1)}^{\dagger} \left(e^{iB_1} + e^{-iB_2} e^{iB_X} \right) \Psi_{(1,1)} \\ &+ \Psi_{(0,0)}^{\dagger} \left(1 + e^{iB_y} \right) \Psi_{(0,1)} \\ &+ \Psi_{(1,0)}^{\dagger} \left(1 + e^{-iB_2} e^{-iB_3} e^{iB_y} \right) \Psi_{(1,1)} + \text{H.c.} \end{split}$$

 $\kappa = 1/2$

Details of H_B and H_M

Hamiltonian :

$$H = H_E^{(matter)} + H_B^{(C.)} + H_K + H_M$$
Magnetic Hamiltonian :
$$aH_B^{(C.)} = -\frac{1}{g^2} [\cos(B_1) + \cos(B_2) + \cos(B_3) + \cos(B_1 + B_2 + B_3)]$$

$$\propto \mathcal{O}(1/g^2)$$
Mass term :
$$aH_M = m[\Psi_{(0,0)}^{\dagger}\Psi_{(0,0)} - \Psi_{(0,1)}^{\dagger}\Psi_{(0,1)} + \Psi_{(1,1)}^{\dagger}\Psi_{(1,1)} - \Psi_{(1,0)}^{\dagger}\Psi_{(1,0)}]$$

$$\propto \mathcal{O}(m)$$

Why do we compute expectation values with ground states?

 Numerical computations in Quantum Harmonic Oscillator indicate that we cannot optimize adequately by taking expectation values with excited states

QT4HEP

Loss function

- Eigenvalues of magnetic operators are compactified $(-\pi,\pi]$
- Possibility that range of magnetic fields goes beyond 2π after optimization
- ln this case, we respect the 2π range of magnetic fields, that is,

 $\Delta = \min\{\Delta^*, 2\pi/N\}$

 Δ^* : Δ obtained by optimizing $L(\Delta)$

%In the case of $\Delta = 2\pi/N$, discretized Hamiltonian by CCR method becomes equivalent with truncated KS method

Error at each level in pure compact U(1) LGT

- Error at each level in pure compact U(1) LGT by CCR method
- Errors increase exponentially with increase of levels

Check convergence of E_n^{conv}

- $E_n^{(N)}$: Energy spectrums obtained by Exact Diagonalization of Hamiltonian after discretization with N discretization points
- Define "convergence of $E_n^{(N)}$ with precision δ " as differences between energy spectrums with N-1 and with N is smaller than δ , that is,

$$\left|\frac{E_{n}^{(N-1)} - E_{n}^{(N)}}{E_{n}^{(N)}}\right| < \delta$$

• We take $\delta = 10^{-3}$

- Difficult to compute all eigenvalues due to huge size of matrices
- We compute $\langle h \rangle_{\beta}^{(N_{\text{cutoff}})}$:

$$\langle h \rangle_{\beta}^{(N_{\text{cutoff}})} = \frac{1}{V} \frac{\sum_{n=0}^{N_{\text{cutoff}}-1} E_n e^{-\beta E_n}}{\sum_{n=0}^{N_{\text{cutoff}}-1} e^{-\beta E_n}}$$

where N_{cutoff} is cutoff level

• We regard $\langle h \rangle_{\beta}^{(N_{\text{cutoff}})}$ to $\langle h \rangle_{\beta}$ with precision δ if $\frac{\langle h \rangle_{\beta}^{(N_{\text{cutoff}}-1)} - \langle h \rangle_{\beta}^{(N_{\text{cutoff}})}}{\langle h \rangle_{\beta}^{(N_{\text{cutoff}})}} < \delta$

• We take $\delta = 10^{-3}$