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Background

s Nonperturbative numerical simulation of gauge theory
» Lattice Gauge Theory (LGT)

s Conventional calculation: Monte Carlo method
Regularization

1 _g (¢) e_SE((pi)
(0) = 7 Do Oe>F > z 0; 7 Regard this as probability
b} » Do Monte Carlo

= In some systems, e=SE(®) /7 becomes complex

» Hard to compute precisely -+ Sign problem Example of sign problem:

» Need to consider alternative calculation method e Real-time dynamics
e Finite density system

e Topological term
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Hamiltonian formulated LGT

Hamiltonian formulated LGT it
= Compute Hilbert space directly ¥ (0)) > YD)
v Free from sign problem > time

X Increase computational resources exponentially for system sizes...?
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Hamiltonian formulated LGT

Hamiltonian formulated LGT it
= Compute Hilbert space directly ¥ (0)) > YD)
v Free from sign problem > time

X Increase computational resources exponentially for system sizes...?

» Quantum computers have potential to overcome!
(3% Tensor network also has)
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Towards quantum computation of gauge fields

s Quantum states of gauge fields have infinite D.O.F.
» Truncation is necessary to implement on classical/quantum computer

Quantum states

Map into o
quantum circuit 41
qz
q3
N
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Previous works on formulation

m Important to choose bases with large contribution
s Important to reduce the size of Hilbert space by utilizing Gauss’ law

Example of Previous works
e R/B formulation [J. F Haase et al., 2021]
o Canonical Commutation Relation (CCR) method [c. W. Bauer, D. M. Grabowska, 2023 ]
e Kogut-Susskind [J. Kogut, L. Susskind, 1975][T. Byrnes, Y, Yamamoto, 2006]
e LOOp-String-Hadron [I. Raychowdhury, J. R. Stryker, 2020]

e Quantum link model [uU. J. Wiese, 2013] o Light-Front [Kreshchuk et al., 2020]
e Quantum group [T.V. Zache et al., 2023] e Fuzzy fields [Alexandru et al., 2024]
e Orbifolds [A. ] Buseretal., 2021] e Spin-dual [Mathur et al., 2016]
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Previous works on formulation

m Important to choose bases with large contribution
s Important to reduce the size of Hilbert space by utilizing Gauss’ law

Example of Previous works
e R/B formulation [J. F Haase et al., 2021]

rl Utilize this method later

o Canonical Commutation Relation (CCR) method [c. W. Bauer, D. M. Grabowska, 2023 ]
o Kogut—Suss kind [J. Kogut, L. Susskind, 1975][T. Byrnes, Y, Yamamoto, 2006]
e LOOp-String-Hadron [I. Raychowdhury, J. R. Stryker, 2020]
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e Quantum group [T.V. Zache et al., 2023] e Fuzzy fields [Alexandru et al., 2024]
e Orbifolds [A. ] Buseretal., 2021] e Spin-dual [Mathur et al., 2016]
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Optimization of digitization of quantum states

Canonical Commutation Relation (CCR) method ¢ oo 50031

x One of the way to optimize quantum states with magnetic basis
» The paper focuses on optimization of low-lying states
in pure (non-)compact (2+1)-dimensional U(1) LGT

2025/1/23 QT4HEP 3




Optimization of digitization of quantum states

Canonical Commutation Relation (CCR) method ¢ oo 50031

x One of the way to optimize quantum states with magnetic basis
» The paper focuses on optimization of low-lying states
in pure (non-)compact (2+1)-dimensional U(1) LGT
» \What about excited states? i.e. finite temperature T # 0

X For example, we need to consider thermal properties to simulate
finite density systems
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Optimization of digitization of quantum states

Canonical Commutation Relation (CCR) method ¢ oo 50031

x One of the way to optimize quantum states with magnetic basis
» The paper focuses on optimization of low-lying states
in pure (non-)compact (2+1)-dimensional U(1) LGT
» \What about excited states? i.e. finite temperature T # 0

X For example, we need to consider thermal properties to simulate
finite density systems

s In this work, we focus on efficient basis choice under T # 0

Pure compact U(1) Compact U(1) w/. fermion
Low-lying states Previous work This work
Excited states This work This work

2025/1/23 QT4AHEP 10




Contents

s Results
| . Pure compact U(1)
I. Compact U(1) including matter
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Setup

s We consider two models :

e Pure compact U(1) LGT
e Compact U(1) LGT including fermion

m For simplicity, we consider following setup:

e Four lattice points ‘ Plaquette p

e Periodic Boundary _
condition (PB.C.) [Link (n, 1) (1 = x,7)

‘Site n
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Pure compact U(1) LGT

"""" 1

Electric fields
at each link

Magnetic fields
on each plaquette

2025/1/23 QT4AHEP 13




Pure compact U(1) LGT

Gauss’ law @ V- E,|phys) =0

Reduce D.O.F. of E;, ,
by utilizing Gauss’ law

)

M
Electric fields Magnetic fields Describe variables of electric fields
at each link on each plaquette in terms of independent variables on

each plaguette called rotator fields
[S. D. Drell et al., , 1979]
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: Coupling constant
Pure COmpaCt U(l) LGT g: Latticle spacing

= The resulting Hamiltonian: | R4/B, can be removed by PB.C. ]
H=HP" + Hp
aHP™ = 2g2[R? + RZ + RZ — R, (R, + R3)]

1
aHg = —? [cos(B;) + cos(B,) + cos(B3)
+cos(B; + B, + B3)]

2025/1/23 QT4HEP 15




: Coupling tant
Pure compact U(L) LGT o e

a Eigenvalues of B fields are ‘R4/B4 can be removed by PB.C. ‘
compactitied (—m, 7]

s R and B hold Canonical Commutation
Relation (CCR):

[Bp' Rp’] = 10p,pr

s We takea=1
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Naive truncation method

m Consider representing those fields by finite dimensional matrices
= Naively, we can discretize those fields by equidistant points:

T _ 27
B = j_ndb b|b)b| — B =ij b )(bi|, b =j& U= —|N|/2,...,IN|/2)

N: Discretization points

Interval of discretization

A =21/N m N is related to number of
L. —> . qubits to do simulation
- e e e e e e
i o m By N - o0, theory after
\ y. truncation returns to
Y original theory

Divide field values with N equidistant points
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Naive truncation method

s Consider representing those fields by finite dimensional matrices
= Naively, we can discretize those fields by equidistant points:

s N 2
=j dbblb)bl > B = ) by byl by =jTF G = ~IN/2,., IN)/2)

m By discrete Fourier transformation, R is given by
00 IN|/2

R= > tlrin)ml > R = Z | ) (T
m=—co =—|N]/2
lN /2

- m 2 I b)) (= Z R by

m=—|N|/
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Canonical Commutation Relation method

CCR methOd [C. W. Bauer, D. M. Grabowska, 2023]
s CCR method is the method which optimize interval of gauge fields A
s We define loss function regarding CCR violation of ground states:

L(A) = 2 (Wes.|[By Ry| — i|Was)

pep

Bp/ﬁp : Magnetic/Rotator operator after discretization at each plaquette
|Wes) @ Ground state obtained by diagonalizing discretized Hamiltonian

s We obtain A to minimize this loss function:

A* = argmin L(A)
A
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Comparison of both methods

[CCR method] [Naive truncation method]

Optimize A A is fixed as 2w /N
oo <+ eee G
- eee eee e e e e e
—T 0 T —1T 0 T

e CCR method can represent sharp wavefunction better than naive
truncation method

e When g — 0, contribution of magnetic Hamiltonian becomes dominant

» Wavefunction becomes sharper with small g

» Anticipated that CCR method is effective in the region of small g

2025/1/23
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L oss function and errors of energy spectrums

[Low-lying levels] m [n low-lying levels, CCR method
optimize energy spectrums

(consist with previous work)
g=05,N=6
1.0 0.200

— L(A)

--=- leveln=0
081 - Jeveln=1
---- leveln =2

)

E,: Numerical values by CCR
method with N = 6

ES°™: Converged values by Naive
truncation method with large N

ine
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/
#/70.150
//
F0.125
-0.100

-0.075
,l

L(A) (solid line)

+/—+0.050

— ECOnV/EConV| (dashed |

o
o
N
(&)
n

This A is equivalent with Naive truncation method
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Loss function and error of energy spectrums

= N excited levels, optimized A

[Excited levels] moves to larger values
0% \ g=05N=6
v \\\ '1.46 .
\ — L) 1 £ = Excited states becomes more
oS8 --= leveln =100 1% 5 spread out
T : 9 -==: |evel n = 150 _105
0 : - | . .
=06 - levein=2001 "3 p Need to take gauge fields in
s N ~Prefmiinan / 05 wider range
gl 1 S M S S AN — F0.6 L
S \\\ \\\\ E\
har - e VO F0.4 Sc
0.2 - TR, T o ey u['
e A s 0.2.¢
\_—/ﬁ e
0.0 L] L) L] L) 0.0
0.4 0.5 0.6 0.7 0.8 0.9 1.0
A
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Thermal observables

s As a benchmark for calculation of
thermal observables, we compute

g=0.5 :
B=0.1 (Naive) thermal expectation value of energy
64 --=- B=0. aive e
— B=0.1 (CCR) / density:
54 ===- B=0.5 (Naive) _= h). = tr He_BH vV
—— B=0.5 (CCR) ( >B ( )/
41 ---- B=1 (Naive)
Q | )
= —— B=1 (CCR) : ’
~ 34 ) .
2-
———"‘T’_’ﬁ'—
1 e
4 6 8 10 12 14 16
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Thermal observables

s As a benchmark for calculation of

thermal observables, we compute
thermal expectation value of energy
density:

(h)p = tr(He PH) v

High temperature region

g=0.5
64 --- B=0.1 (Naive)
54 ===- B=0.5 (Naive) _=
—— B=0.5 (CCR)

44 ---- B=1 (Naive) |
= ([t | |
g .- B=1 (CCR) { ,

2T

___._——’—’-:'S‘-—
14 = i
4 6 8 0 12 14 16
N

2025/1/23

s Both methods did not converge
s Contribution of excited states becomes

dominant
» Figure indicates that both truncation is

insufficient to represent quantum states
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Thermal observables

s As a benchmark for calculation of
thermal observables, we compute

g=0.5 .
_ thermal expectation value of energy
64 --- B=0.1 (Naive) d t .
—— B=0.1 (CCR) / ensity.
54 ---- B=0.5 (Naive) _= W) := tr He_BH vV
— B=0.5 (CERY ( >B ( )/
41 ---- B=1 (Naive) '
. A ! ! l .
£ |I=FNR aly L ow temperature region
s CCR method shows better convergence
= [ :7 compared with naive truncation method
T | = [ndicates that we can simulate gauge fields
: : — with less qubits

QT4HEP 25
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Compact U(1) LGT including fermion

s Hamiltonian: ‘ Mass term of fermion ‘

H = H™Y 4 Hy + Hy + Hy,

Electric Hamiltonian is modified
by the change of Gauss’ law:

(V-E, — qn)|phys) =0
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Compact U(1) LGT including fermion

s Hamiltonian:
H = H™Y 4 Hy + Hy + Hy,

Interaction between
gauge fields and fermion
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Compact U(1) LGT including fermion

s Hamiltonian: R S —
__ yy(matter) 1
H_HE +HB+HK+HM

» We take staggered fermion Yo | Yan
{LIJT-IL-) Lpn’} — 571,71’

Y(1,0)

@® : Matter
® : Anti matter
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Compact U(1) LGT including fermion

= Hamiltonian: A

__ rr(matter) 1
H = H, + Hg + Hx + Hy, i
s We take staggered fermion Yo,1) Y11 I
{LIJT-IL-' Lpn,} — 5n,nl Ry/By [
I
= In addition to fermion, we need to consider I
. Y00

e String operators: Ry :

Ry /By

= They also satisfy CCR: |B,,R,| = i8,, (w,v =1,2,3,x,y)
® : Matter
® : Anti matter
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L oss function and errors of energy spectrums

g=05m=1,k=05N=6
— [(A)
---- leveln =0

——leveln=1-+
-=-=- leveln =2

s Extend loss function to optimize
string operators:

o
o
~

|En — ESP™/ESP™Y| (dashed line)

o
o
v

L(A) = Z (Wes.|[Bi Ri] — i|Wes)l

i1=1,2,3,x,y

o
o
&

L(A) (solid line)

= [n this parameter, CCR method
optimize low-lying states

o
o
N

o
o
=

o
o
o

m: Coefficient of Hy,
k: Coefficient of Hy
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Thermal expectation value of energy density

s CCR method shows better
g=05m=1,k=0.5 convergence than naive truncation
— method regarding with (h)g

g —— T » Indicates that CCR methods tell

2704 e e better representation of quantum
@,y YO | g statesunder T =0
£ Lt jr
—2.2 B
-==- B=3.0 (Naive)
—-2.34 —— B=3.0(CCR)
---- B=10.0 (Naive)
—-2.4 -
—— B=10.0 (CCR)
3 4 5 6
N
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Conclusion

Summary

= In both theories, CCR method shows better convergence about thermal
observables than naive truncation method

Future direction

m Extend to larger systems

s Extend to non-abelian theory

s Implement quantum algorithms P Observe physical quantities
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Appendix




Why do we consider (2+1)-dimensional theory?

a In (2+1)-dimensional LGT, D.O.F. of gauge fields remains even solving
Gauss’ law (constraints)

» I[mportant to consider contributions of gauge fields seriously!

x In (14+1)-dimensional LGT, we can solve gauge fields D.O.F. completely
under periodic boundary condition
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Details of ™"

s Hamiltonian :

H = HL(?matter) n Hl(?C.) + Hy + Hy,

fa

Electric Hamiltonian have interactions between
rotator, string and fermion R

y
aH " = g2(2[R? + R} + R3 — Ry(Ry + R3)]
+R7 + Ry + (R + R, — R3)R,
—(Ry —R; — R3)R,,
—[q1,00(R1 + Ry) + qe01) (Rz — Ry + Ry)
+ 2R{ — R, + R
q(1,1)(2Ry 2 x)] Ry /y + string operator

. CI(21,0) + CI(20,1) +2q91,1Q1,0) T 91,1))
2

} qn - charge operator at site n
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Details of Hy

s Hamiltonian :

H = H™Y 4 Hyp + Hy + Hy,

Interaction /_ iB,,

aHy = k [lIJ(TO,O)(l + eB )Wy o
+LIJ(JFO’1)(eiB1 + e_iBZein)\P(ljl)
+9 8 0 (1 + )W)
+9 (1 + e B2e™ BBy )W, 1) + H.c.]

k=1/2
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Details of Hz and Hy,

s Hamiltonian :

H = Hl(?matter) n Hl(?C.) + Hy + Hy,

/N

Magnetic Hamiltonian : Mass term

1 _ T T
aHéC') = ——[cos(B;) + cos(B;) + cos(B3) aHy =m[¥ 0¥ 0,00 = ¥(o,1)Y0,1)
J P Y — Yo Pao]

o« O(m)

+cos(B, + B, + B3)]
< 0(1/9°)
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Why do we compute expectation values with ground states?

s Numerical computations in Quantum Harmonic Oscillator indicate that
we cannot optimize adequately by taking expectation values with
excited states

Quantum Harmonic Oscillator (N=8) Quantum Harmonic Oscillator (N=8)
0.025 - i '
: ! 7.2 |
1 |
1 |
1 |
0.020 - | 7.0 - H
! |
1 |
! :

5 0.015 + ! —— Loss function L(A) (level 0) 5 6.8 1 ! — Loss function L(A) (level 7)
3 i ---- Sampling theoremA = v/ 2r1/N, 3 i ---- Sampling theoremA =\ 2n/N,
0.010 A 6.6 - :
| |
| |
| |
0.005 - : 6.4 1 :
! |
1 |
1 |
0.000 - : 6.21 E
0 1 2 3 4 5 0 1 2 3 4 5
A A
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L oss function

s Eigenvalues of magnetic operators are compactitied (—m, ]
» Possibility that range of magnetic fields goes beyond 2m after
optimization
» In this case, we respect the 2m range of magnetic fields, that is,
A = min{A", 2 /N}
A* : A obtained by optimizing L(A)

XIn the case of A = 2n/N, discretized Hamiltonian by CCR method
becomes equivalent with truncated KS method

2025/1/23 QT4HEP 39




“rror at each level in pure compact U(1) LGT

x Error at each level in pure compact U(1) LGT by CCR method

g=0.5

m Errors increase exponentially

10° 4
with increase of levels

10-1-§
10-2-§

1073 3

1074 3

0 100 200 300 400 500
level

2025/1/23 QT4HEP 40




Check convergence of ESO™

o E,SN): Energy spectrums obtained by Exact Diagonalization of
Hamiltonian after discretization with N discretization points

» Define “convergence of E,(lN) with precision §" as differences between
energy spectrums with N — 1 and with N is smaller than §, that is,

Er(lN_l) o E1SN)

<o

EM)

s We take 6§ = 1073
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Calculation of thermal observables in compact U(1) with fermion

s Difficult to compute all eigenvalues due to huge size of matrices

= We compute (h)(NC“tOff)

Ncutofr—1 —BE
12550 E e Pn

(Ncutoff)
<h> V Z cutoff 1 e —BEn

where Nqytofr 1S CUtOft level

= We regard (h)(ﬁ cutoft) (h)p with precision § if
<h>(Ncutoff 1) <h>(Ncutoff)

<o

(h) (Ncutoff)

s We take § = 1073
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