



Università degli Studi di Padova



# Tree Tensor Network predictors implemented on FPGA for ultra-low latency inference.

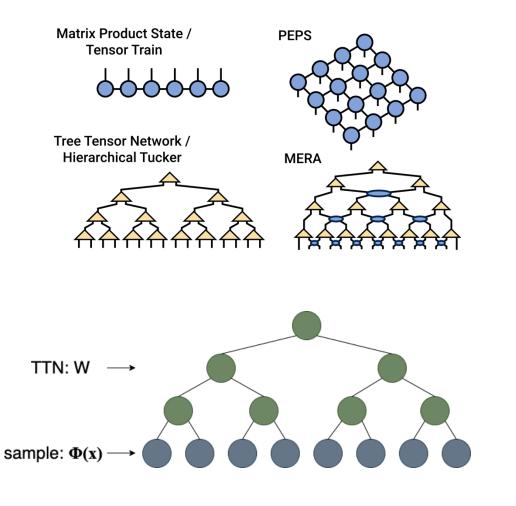
International Conference on Quantum Technologies for High-Energy Physics

22 January 2025

L. Borella, A. Coppi, J. Pazzini, A. Stanco, A. Triossi, M. Zanetti. University of Padua and INFN. lorenzo.borella.1@phd.unipd.it

This work is partially supported by ICSC, Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union, NextGenerationEU.

## Tree Tensor Networks for machine learning



• Tensor network methods:

represent wavefunctions  $|\psi\rangle$  and hamiltonians *H* of many-body quantum systems on classical computers<sup>[1]</sup>.

- Tree Tensor Networks can be trained as machine learning classifiers.
- **Classical data** samples are represented as separable quantum states, encoding each feature as a qubit.
- A **supervised learning** algorithm can train the tree tensors according to a classification decision function.
- After training, the TTN architecture encodes the **learned information** as quantum entangled state.

[1] E.Miles Stoudenmire and David J. Schwab. «Supervised learning with quantum-inspired tensor networks.» arXiv: 1605.05775.

## Tree Tensor Network for machine learning

#### • Compression while learning:

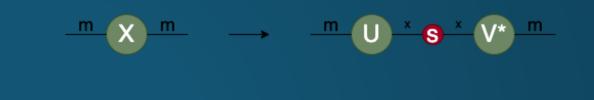
bond dimensions can be optimized during training, reducing the total number of parameters by truncating the size of the inner links of the network with SVD.

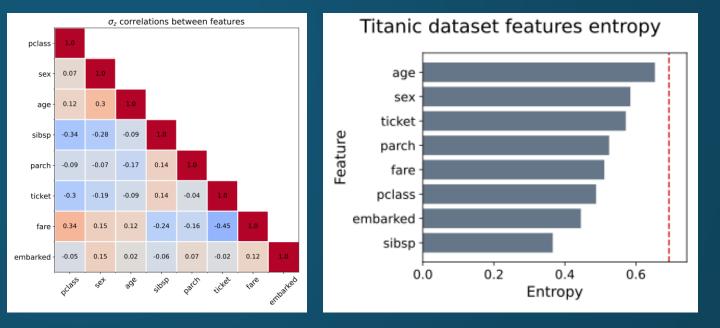
#### • Quantum correlations:

remove redundant information by studying feature correlation and highlighting the ones that are the least correlated.

• Von Neumann Entropy:

study the relevance of the learned information encoded in each TTN bipartition and prune useless branches<sup>[2]</sup>.





[2] A. Giannelle D. Zuliani T. Felser D.Lucchesi S.Montangero M. Trenti, L. Sestini. «Quantum-inspired machine learning on high-energy physics data» Nature, 2021. https://doi.org/10.1038/s41534-021-00443-w

## Tree Tensor Network inference on FPGA

## TTN

- **Optimized learning**: SVD, bond dimension tuning.
- Safe post-training pruning: entropy and correlation.
- Linear algebra: only tensor contractions involved.
- **Highly parallelizable** inference algorithm.
- **Performances** comparable to classic ML methods.

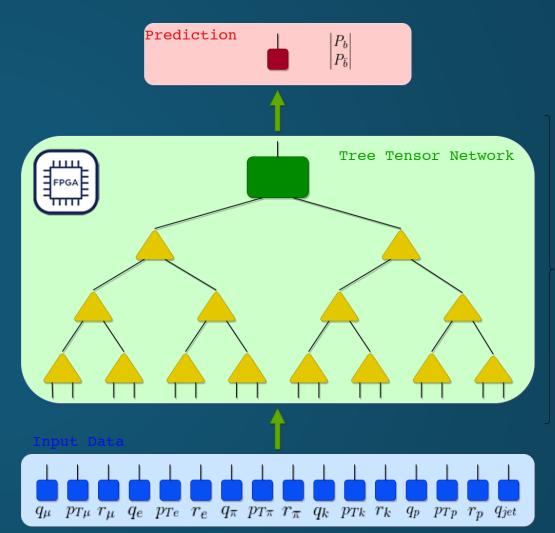


- Versatile programmable hardware.
- Pipelined parallel computations.
- Deterministic latency.
- Limited resources: need for compressed architectures and optimal exploitation of logic.
- **Sub-microsecond latency**: deployable for **online processing** for HEP experiments.

## Tree Tensor Network inference on FPGA

| Dataset            | Iris  | Titanic | LHCb <sup>[3]</sup> | hls4ml      |
|--------------------|-------|---------|---------------------|-------------|
| Features           | 4     | 8       | 16                  | 16          |
| Bond<br>dimensions | [2,4] | [2,4,8] | [2,4,8,8]           | [2,4,10,10] |
| Classes            | 2     | 2       | 2                   | 5           |
| Accuracy           | 99%   | 77%     | 62%                 | 73%         |
| Memory             | 96 B  | 768 B   | 3 kB                | 6 kB        |

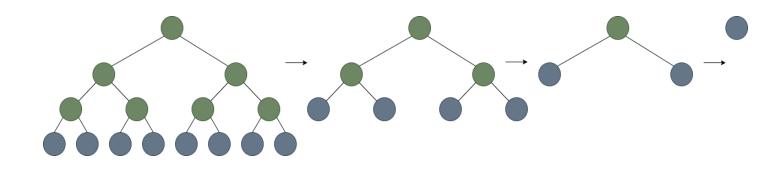
- Task: binary and multi classification.
- **Software:** successfully trained several TTN architectures.
- Hardware: inference offloaded in FPGA and validated.



[3] L. Borella, A. Coppi, J. Pazzini, A. Stanco, M. Trenti, A. Triossi, M. Zanetti «Ultra-low latency quantum-inspired machine learning predictors implemented on FPGA», arxiv:2409.16075

## Tree Tensor Network inference on FPGA

- 1. FPGA is programmed with architecture-specific firmware.
- Software-trained weights are loaded on static blocks of RAM.
- 3. Data that needs to be classified is **streamed** to the FPGA.
- 4. Feature mapping is applied on input data and implemented in hardware with LUTs.
- 5. Full contraction with the TTN architecture.
- 6. Retrieve **final probability** and classify sample.

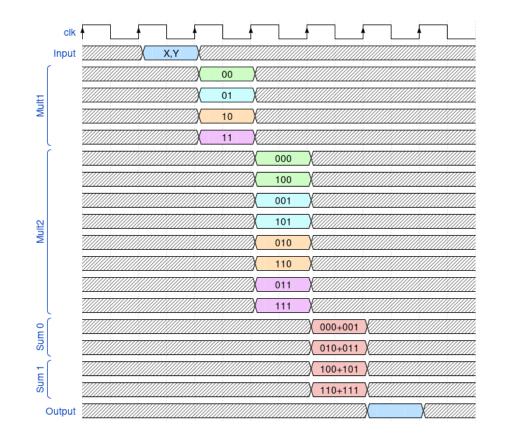


**Tensor contraction** is the base operation that needs to be defined on FPGA: choose **different degrees of parallelization** and iterate it for different layers.

**Digital Signal Processor (DSP)** is the resource devoted to arithmetic calculations on FPGA.

#### Full Parallel implementation

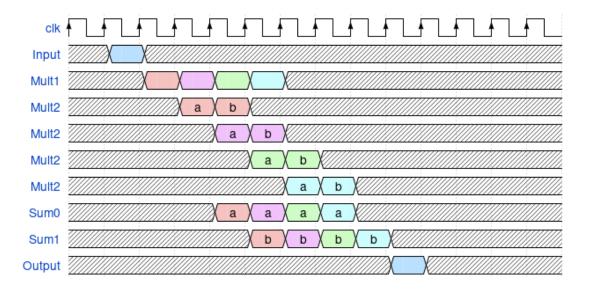
$$latency = \sum_{i=1}^{L} 2 + \log_2(\chi_{i-1}^2) \qquad DSP = \sum_{i=1}^{L} \chi_{i-1}^2(\chi_i + 1) \frac{N}{2^i}$$

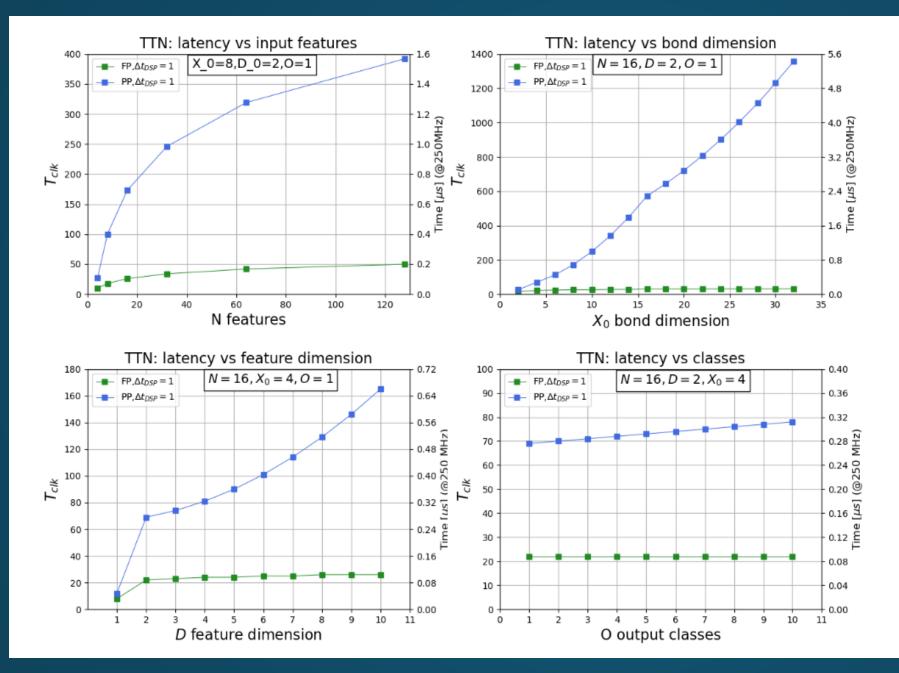


### Partial Parallel implementation

$$latency = \sum_{i=1}^{L} \chi_{i-1}^2 + \chi_i + 1$$

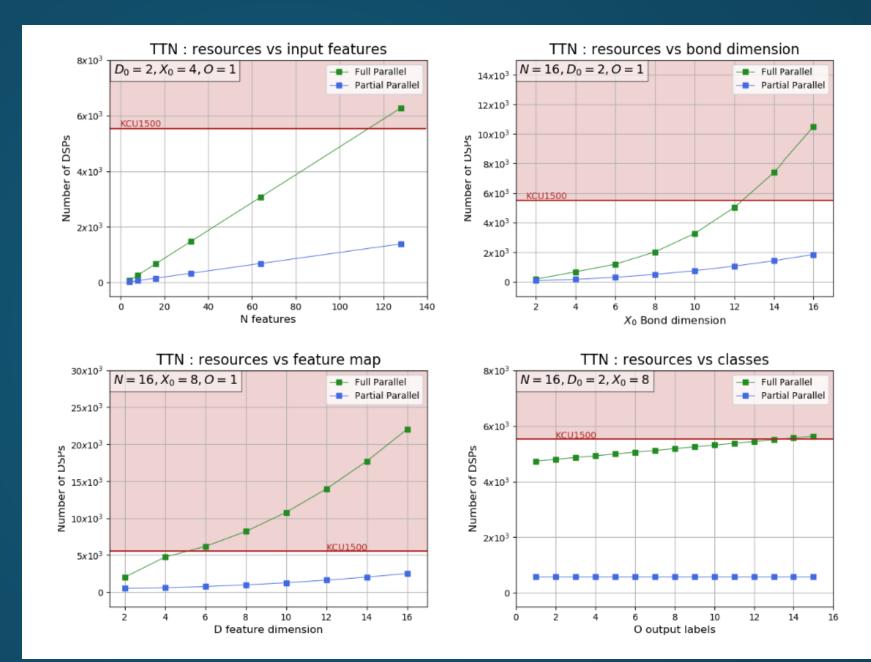
$$DSP = \sum_{i=1}^{L} (\chi_{i-1}^2 + 1) \frac{N}{2^i}$$



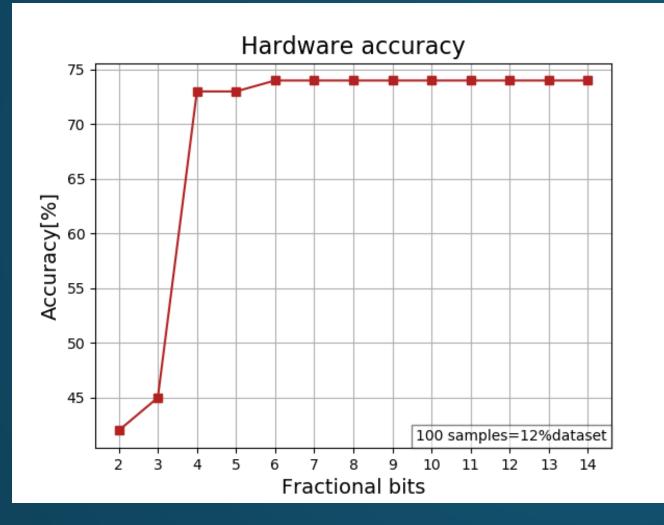


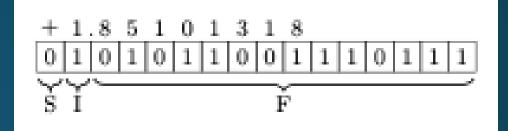
## Latency

## Resources



## Quantization

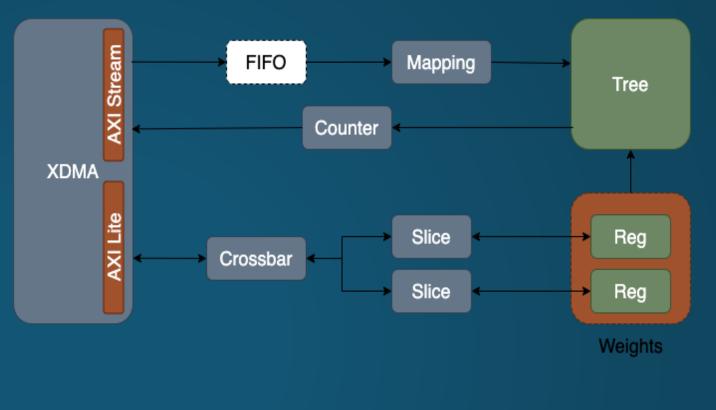


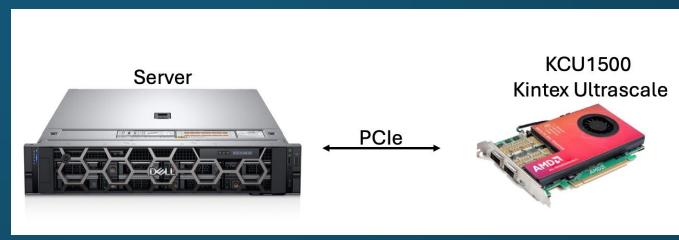


- Real values represented as 16 bits fixed points.
- The choice for **numeric precision** is **model-specific**.
- Avoid DSP usage for number of fractional bits below hardware-specific threshold.
- Additional network compression without loosing classification accuracy.

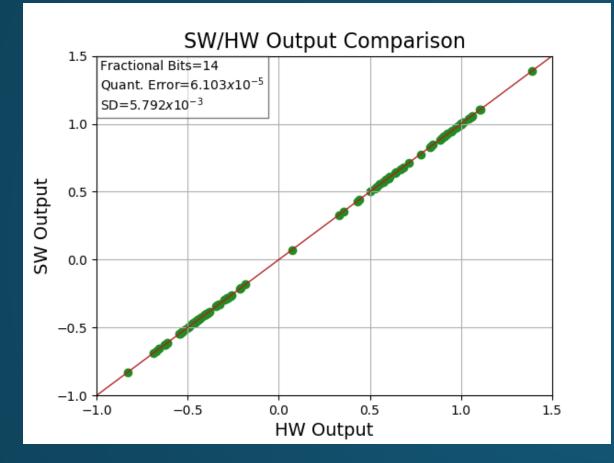
## Firmware

- Firmware described in **VHDL** using **Vivado 2024**.
- Project developed on an KCU 1500 Kintex UltraScale board.
- Development board plugged on host PC with **PCIe communication.**
- AXI Lite and AXI Stream protocols with global clock frequency of 250MHz.
- OOC TTN implementation reaching **500 MHz**.





## Results of inference



 $\operatorname{HW} \operatorname{Output}^{0.03}$ 

SW/HW Output Comparison

0.05

0.04

Fractional Bits=14

SD=0.000671

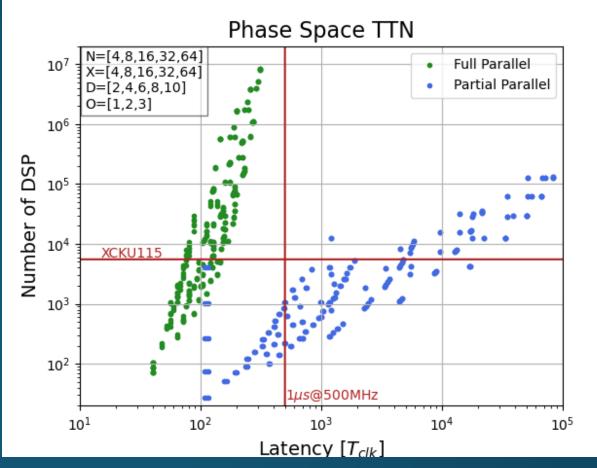
Quant. Error=6.1e-05

- Titanic dataset, 8 features, 100 samples
- Input:  $10^{-5}$  -> Output (average):  $10^{-3}$  (7 LSBs)
- Hw accuracy drops with less than **4 frac. bits**

- LHCb dataset, 16 features, 500 samples
- Input:  $10^{-5} \rightarrow \text{Output}$  (average):  $10^{-4}$  (4 LSBs)
- Hw accuracy drops with less than **10 frac. bits**

# Conclusions

- Trained **TTN architectures** and derived **accuracies comparable** with NN counterparts.
- VHDL firmware for TTN inference with different degrees of parallelization.
- Deterministic projections of resources and latency values for different TTN architectures.
- Exact replication of software behaviour in FPGA hardware.
- Inference algorithm latency **below 1 us:** possible deployment in **trigger pipeline** of HEP experiments.



| Dataset | TTN             | DSP    | Latency |
|---------|-----------------|--------|---------|
| Iris    | PP [2,4,1]      | 1%     | 108 ns  |
| Titanic | FP[2,4,8,1]     | 8%     | 72 ns   |
| LHCb    | FP[2,4,8,8,1]   | 36.5%  | 104 ns  |
| hls4ml  | FP[2,4,10,10,5] | 66.38% | 104 ns  |

Thank you!