
Tree Tensor Network predictors implemented on
FPGA for ultra-low latency inference.

L. Borella, A. Coppi, J. Pazzini, A. Stanco, A. Triossi, M. Zanetti.
University of Padua and INFN. lorenzo.borella.1@phd.unipd.it

22 January 2025

International Conference on Quantum Technologies for High-Energy Physics

This work is partially supported by ICSC, Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by

European Union, NextGenerationEU.

Tree Tensor Networks for machine learning

• Tensor network methods:
represent wavefunctions |ψ⟩ and hamiltonians H of
many-body quantum systems on classical
computers[1] .

• Tree Tensor Networks can be trained as machine
learning classifiers.

• Classical data samples are represented as separable
quantum states, encoding each feature as a qubit.

• A supervised learning algorithm can train the tree
tensors according to a classification decision
function.

• After training, the TTN architecture encodes the
learned information as quantum entangled state.

[1] E.Miles Stoudenmire and David J. Schwab. «Supervised learning with quantum-inspired tensor networks.» arXiv: 1605.05775.

https://arxiv.org/abs/1605.05775

Tree Tensor Network for machine learning

• Compression while learning:
bond dimensions can be optimized
during training, reducing the total
number of parameters by truncating
the size of the inner links of the
network with SVD.

• Quantum correlations:
remove redundant information by
studying feature correlation and
highlighting the ones that are the
least correlated.

• Von Neumann Entropy:
study the relevance of the learned
information encoded in each TTN
bipartition and prune useless
branches[2].

[2] A. Giannelle D. Zuliani T. Felser D.Lucchesi S.Montangero M. Trenti, L. Sestini. «Quantum-inspired machine learning on high-energy physics data»

Nature, 2021. https://doi.org/10.1038/s41534-021-00443-w

https://doi.org/10.1038/s41534-021-00443-w

Tree Tensor Network inference on FPGA

TTN

• Optimized learning: SVD, bond

dimension tuning.

• Safe post-training pruning: entropy

and correlation.

• Linear algebra: only tensor

contractions involved.

• Highly parallelizable inference

algorithm.

• Performances comparable to classic

ML methods.

• Versatile programmable hardware.

• Pipelined parallel computations.

• Deterministic latency.

• Limited resources: need for

compressed architectures and

optimal exploitation of logic.

• Sub-microsecond latency: deployable

for online processing for HEP

experiments.

FPGA

Tree Tensor Network inference on FPGA

• Task: binary and multi classification.

• Software: successfully trained several
TTN architectures.

• Hardware: inference offloaded in
FPGA and validated.

Dataset Iris Titanic LHCb [3] hls4ml

Features 4 8 16 16

Bond
dimensions

[2,4] [2,4,8] [2,4,8,8] [2,4,10,10]

Classes 2 2 2 5

Accuracy 99% 77% 62% 73%

Memory 96 B 768 B 3 kB 6 kB

[3] L. Borella, A. Coppi, J. Pazzini, A. Stanco, M. Trenti, A. Triossi, M. Zanetti «Ultra-low latency quantum-inspired machine learning predictors implemented on

FPGA», arxiv:2409.16075

https://arxiv.org/abs/2409.16075

Tree Tensor Network inference on FPGA

𝑧𝑖 =෍

𝑗,𝑘

𝑥𝑗𝑦𝑘𝑉𝑖𝑗𝑘

1. FPGA is programmed with

architecture-specific firmware.

2. Software-trained weights are

loaded on static blocks of RAM.

3. Data that needs to be classified is

streamed to the FPGA.

4. Feature mapping is applied on

input data and implemented in

hardware with LUTs.

5. Full contraction with the TTN

architecture.

6. Retrieve final probability and

classify sample.

Tensor contraction is the base operation that needs to be

defined on FPGA: choose different degrees of parallelization

and iterate it for different layers.

Digital Signal Processor (DSP) is the resource devoted to

arithmetic calculations on FPGA.

Full Parallel implementation Partial Parallel implementation

Latency

Resources

Quantization

• Real values represented as 16 bits

fixed points.

• The choice for numeric precision

is model-specific.

• Avoid DSP usage for number of

fractional bits below hardware-

specific threshold.

• Additional network compression

without loosing classification

accuracy.

Firmware

• Firmware described in VHDL

using Vivado 2024.

• Project developed on an

KCU 1500 Kintex UltraScale

board.

• Development board plugged on

host PC with PCIe

communication.

• AXI Lite and AXI Stream

protocols with global clock

frequency of 250MHz.

• OOC TTN implementation

reaching 500 MHz.

Results of inference

• LHCb dataset, 16 features, 500 samples

• Input: 10-5 -> Output (average): 10-4 (4 LSBs)

• Hw accuracy drops with less than 10 frac. bits

• Titanic dataset, 8 features, 100 samples

• Input: 10-5 -> Output (average): 10-3 (7 LSBs)

• Hw accuracy drops with less than 4 frac. bits

Conclusions
• Trained TTN architectures and

derived accuracies comparable
with NN counterparts.

• VHDL firmware for TTN inference
with different degrees of
parallelization.

• Deterministic projections of
resources and latency values for
different TTN architectures.

• Exact replication of software
behaviour in FPGA hardware.

• Inference algorithm latency below 1
us: possible deployment in trigger
pipeline of HEP experiments.

Dataset TTN DSP Latency

Iris PP [2,4,1] 1% 108 ns

Titanic FP [2,4,8,1] 8% 72 ns

LHCb FP [2,4,8,8,1] 36.5% 104 ns

hls4ml FP [2,4,10,10,5] 66.38% 104 ns

Thank you!

	Slide 1: Tree Tensor Network predictors implemented on FPGA for ultra-low latency inference.
	Slide 2: Tree Tensor Networks for machine learning
	Slide 3: Tree Tensor Network for machine learning
	Slide 4: Tree Tensor Network inference on FPGA
	Slide 5: Tree Tensor Network inference on FPGA
	Slide 6: Tree Tensor Network inference on FPGA
	Slide 7: Full Parallel implementation
	Slide 8
	Slide 9
	Slide 10: Quantization
	Slide 11: Firmware
	Slide 12: Results of inference
	Slide 13: Conclusions
	Slide 14: Thank you!

