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Tree Tensor Networks for machine learning

• Tensor network methods: 
represent wavefunctions |ψ⟩ and hamiltonians H of  
many-body quantum systems on classical 
computers[1] . 

• Tree Tensor Networks can be trained as machine 
learning classifiers.

• Classical data samples are represented as separable 
quantum states, encoding each feature as a qubit.

• A supervised learning algorithm can train the tree 
tensors according to a classification decision 
function.

• After training, the TTN architecture encodes the 
learned information as quantum entangled state.

[1] E.Miles Stoudenmire and David J. Schwab. «Supervised learning with quantum-inspired tensor networks.» arXiv: 1605.05775. 

https://arxiv.org/abs/1605.05775


Tree Tensor Network for machine learning

• Compression while learning:
bond dimensions can be optimized 
during training, reducing the total 
number of  parameters by truncating 
the size of  the inner links of  the 
network with SVD. 

• Quantum correlations:
remove redundant information by 
studying feature correlation and 
highlighting the ones that are the 
least correlated.

• Von Neumann Entropy:
study the relevance of  the learned 
information encoded in each TTN 
bipartition and prune useless 
branches[2].

[2] A. Giannelle D. Zuliani T. Felser D.Lucchesi S.Montangero M. Trenti, L. Sestini. «Quantum-inspired machine learning on high-energy physics data» 

Nature, 2021. https://doi.org/10.1038/s41534-021-00443-w

https://doi.org/10.1038/s41534-021-00443-w


Tree Tensor Network inference on FPGA

TTN

• Optimized learning: SVD, bond 

dimension tuning.

• Safe post-training pruning: entropy 

and correlation.

• Linear algebra: only tensor 

contractions involved.

• Highly parallelizable inference 

algorithm.

• Performances comparable to classic 

ML methods.

• Versatile programmable hardware.

• Pipelined parallel computations.

• Deterministic latency.

• Limited resources: need for 

compressed architectures and

optimal exploitation of  logic.

• Sub-microsecond latency: deployable 

for online processing for HEP 

experiments.

FPGA



Tree Tensor Network inference on FPGA

• Task: binary and multi classification.

• Software: successfully trained several 
TTN architectures.

• Hardware: inference offloaded in 
FPGA and validated.

Dataset Iris Titanic LHCb [3] hls4ml

Features 4 8 16 16

Bond 
dimensions

[2,4] [2,4,8] [2,4,8,8] [2,4,10,10]

Classes 2 2 2 5

Accuracy 99% 77% 62% 73%

Memory 96 B 768 B 3 kB 6 kB

[3] L. Borella, A. Coppi, J. Pazzini, A. Stanco, M. Trenti, A. Triossi, M. Zanetti «Ultra-low latency quantum-inspired machine learning predictors implemented on 

FPGA», arxiv:2409.16075

https://arxiv.org/abs/2409.16075


Tree Tensor Network inference on FPGA
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1. FPGA is programmed with 

architecture-specific firmware.

2. Software-trained weights are 

loaded on static blocks of  RAM.

3. Data that needs to be classified is 

streamed to the FPGA.

4. Feature mapping is applied on 

input data and implemented in 

hardware with LUTs.

5. Full contraction with the TTN 

architecture.

6. Retrieve final probability and 

classify sample.

Tensor contraction is the base operation that needs to be 

defined on FPGA: choose different degrees of  parallelization 

and iterate it for different layers.

Digital Signal Processor (DSP) is the resource devoted to 

arithmetic calculations on FPGA.
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Latency



Resources



Quantization

• Real values represented as 16 bits 

fixed points.

• The choice for numeric precision 

is model-specific.

• Avoid DSP usage for number of  

fractional bits below hardware-

specific threshold.

• Additional network compression 

without loosing classification 

accuracy.



Firmware

• Firmware described in VHDL

using Vivado 2024.

• Project developed on an 

KCU 1500 Kintex UltraScale

board.

• Development board plugged on 

host PC with PCIe 

communication.

• AXI Lite and AXI Stream 

protocols with global clock 

frequency of  250MHz.

• OOC TTN implementation 

reaching 500 MHz.



Results of  inference

• LHCb dataset, 16 features, 500 samples

• Input: 10-5 -> Output (average): 10-4 (4 LSBs)

• Hw accuracy drops with less than 10 frac. bits

• Titanic dataset, 8 features, 100 samples

• Input: 10-5 -> Output (average): 10-3 (7 LSBs)

• Hw accuracy drops with less than 4 frac. bits



Conclusions
• Trained TTN architectures and 

derived accuracies comparable 
with NN counterparts.

• VHDL firmware for TTN inference 
with different degrees of  
parallelization.

• Deterministic projections of  
resources and latency values for 
different TTN architectures.

• Exact replication of  software 
behaviour in FPGA hardware.

• Inference algorithm latency below 1 
us: possible deployment in trigger 
pipeline of  HEP experiments.

Dataset TTN DSP Latency

Iris PP [2,4,1] 1% 108 ns

Titanic FP [2,4,8,1] 8% 72 ns

LHCb FP [2,4,8,8,1] 36.5% 104 ns

hls4ml FP [2,4,10,10,5] 66.38% 104 ns



Thank you!
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