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Tree Tensor Networks for machine learning
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Tensor network methods:

represent wavefunctions |{) and hamiltonians H of
many-body quantum systems on classical
computers! .

Tree Tensor Networks can be trained as machine
learning classifiers.

Classical data samples are represented as separable
quantum states, encoding each feature as a qubit.

A supervised learning algorithm can train the tree
tensors according to a classification decision
function.

After training, the T'TN architecture encodes the
learned information as quantum entangled state.

[1] E.Miles Stoudenmire and David J. Schwab. «Supervised learning with quantum-inspired tensor networks.» arXiv: 1605.05775.



https://arxiv.org/abs/1605.05775

Tree Tensor Network for machine learning

* Compression while learning:

bond dimensions can be optimized X Uu s W\
during training, reducing the total

number of parameters by truncating

the size of the inner links of the

network with SVD.
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[2] A. Giannelle D. Zuliani T. Felser D.Lucchesi S.Montangero M. Trenti, L. Sestini. «Quantum-inspired machine learning on high-energy physics data»
Nature, 2021.


https://doi.org/10.1038/s41534-021-00443-w

Tree Tensor Network inference on FPGA

TTN

Optimized learning: SVD, bond
dimension tuning,
Safe post-training pruning: entropy

and correlation.

Linear algebra: only tensor
contractions involved.

Highly parallelizable inference
algorithm.

Performances comparable to classic
MIL. methods.

FPGA

Versatile programmable hardware.
Pipelined parallel computations.
Deterministic latency.

Limited resources: need for
compressed architectures and
optimal exploitation of logic.
Sub-microsecond latency: deployable
for online processing for HEP
experiments.




Tree Tensor Network inference on FPGA

I T T T T 1 Prediction
Dataset Iris Titanic | LHCb [31 | hls4ml ﬁ

Tree Tensor Network
‘E#HHF’

Features 16 16

Bond [2,4,8,8] [2,4,10,10]
dimensions

Classes 2 5

Accuracy 62% 73%
Memory 3 kB 6 kB

* Task: binary and multi classification. / \ / \ / \ f \

* Software: successfully trained several i e e e e e e e
TTN architectures.

e Hardware: inference offloaded in i ﬁ ﬁ ﬁ i i i ﬁ ﬁ ﬁ i i ﬁ i ﬁ i
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[3] L. Borella, A. Coppi, J. Pazzini, A. Stanco, M. Trenti, A. Triossi, M. Zanetti «Ultra-low latency quantum-inspired machine learning predictors implemented on
FPGA»,


https://arxiv.org/abs/2409.16075

Tree Tensor Network inference on FPGA

1. FPGA 1s programmed with O

architecture-specific firmware. o — -

2. Software-trained weights are
loaded on static blocks of RAM.

3. Data that needs to be classified 1s

streamed to the FPGA. Tensor contraction is the base operation that needs to be
defined on FPGA: choose different degrees of parallelization
and iterate it for different layers.
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Digital Signal Processor (DSP) is the resource devoted to
arithmetic calculations on FPGA.

4. Feature mapping is applied on
input data and implemented in
hardware with LUTs.

5. Full contraction with the TTN
architecture.

6. Retrieve final probability and
classify sample.



Full Parallel implementation
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Partial Parallel implementation
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TTN: latency vs input features
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TTN: latency vs feature dimension
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TTN: latency vs bond dimension
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Resources

Number of UsPs

TTN : resources vs input features
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TTN : resources vs bond dimension
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* Real values represented as 16 bits

Hardware accuracy fixed bo;
1xe p01nts.

* The choice for numeric precision
is model-specific.

[=)]
Ln

h
o

* Avoid DSP usage for number of
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* Additional network compression

100 samples=12%dataset

L S s without loosing classification
Fractional bits accuracy.




Firmware 5 Mapping
ﬁ Tree
5 Counter
* Firmware described in VHDL
using Vivado 2024. HOMA
i
* Project developed on an g F— Slice Reg
KCU 1500 Kintex UltraScale Si
ice Reg

board.

* Development board plugged on

host PC with PCle
communication.
KCU1500

* AXI Lite and AXI Stream Kintex Ultrascale
protocols with global clock
frequency of 250MHz.

* OOCTTN implementation
reaching 500 MHz.



Results of inference
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* LHCb dataset, 16 features, 500 samples
* Input: 10 -> Output (average): 10 (4 LSBs)
* Hw accuracy drops with less than 10 frac. bits

* Titanic dataset, 8 features, 100 samples
* Input: 10 -> Output (average): 107 (7 LSBs)
* Hw accuracy drops with less than 4 frac. bits




Phase Space TTN

o Full Parallel

COHCluSiOﬂS ; |N=[4,8,16,32,64]

' 1X=[4,8.16,32.64]

D=[2,4,6,8,10] » Partial Parallel

*  Trained TTN architectures and
derived accuracies comparable
with NN counterparts.

. VHDL firmware for T'TN inference
with different degrees of
parallelization.

Number of DSP

*  Deterministic projections of

resources and latency values for
different T'TN architectures.

*  Exactreplication of software Dataset TTN DSP Latency
behaviour in FPGA hardware. _
Iris PP [2,4,1] 1%

Titanic FP[2,4,8,1] 8%
* Inference algorithm latency below 1
us: possible deployment in trigger

LHCb FP[2,4,8,8,1]  36.5%
pipeline of HEP experiments. hls4ml FP[2,4,10,10,5] 66.38%
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