WV ICS Cen S e QUANTUM

FRONTIERS

Centro Nazionale di Ricerca in HPC, D v /b1 PADOVA
Big Data and Quantum Computing S &

Tree Tensor Network predictors implemented on
FPGA tor ultra-low latency inference.

International Conference on Quantum Technologies for High-Energy Physics

22 January 2025

L. Borella, A. Coppy, J. Pazzini, A. Stanco, A. Triossi, M. Zanetti.
University of Padua and INFN. lorenzo.borella.1(@phd.unipd.it

This work is partially supported by ICSC, Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by
European Union, NextGenerationEU.

Tree Tensor Networks for machine learning

Matrix Product State /
Tensor Train

eletetelete

Tree Tensor Network /
Hierarchical Tucker MERA

in (T

TINNW —

sample: ®(x) —

Tensor network methods:

represent wavefunctions |{) and hamiltonians H of
many-body quantum systems on classical
computers! .

Tree Tensor Networks can be trained as machine
learning classifiers.

Classical data samples are represented as separable
quantum states, encoding each feature as a qubit.

A supervised learning algorithm can train the tree
tensors according to a classification decision
function.

After training, the T'TN architecture encodes the
learned information as quantum entangled state.

[1] E.Miles Stoudenmire and David J. Schwab. «Supervised learning with quantum-inspired tensor networks.» arXiv: 1605.05775.

https://arxiv.org/abs/1605.05775

Tree Tensor Network for machine learning

* Compression while learning:

bond dimensions can be optimized X Uu s W\
during training, reducing the total

number of parameters by truncating

the size of the inner links of the

network with SVD.
o, correlations between features TltEIl"'IIC datESEt features Eﬂtrﬂpy
* Quantum correlations:
)) sex{ O age
remove redundant information by cox
st.ud%lng feature correlation and | ticket
highlighting the ones that are the sosp | .
parch
least correlated. -~ e .
Tare
ticket| 03 -018 -0 : 0. pclass
* Von Neumann Entropy: N | embarked
study the relevance of the learned — 0sP
information encoded in each TTN e e , . 2 0.4
bipartition and prune useless ' : Entropy
branches!?l.

[2] A. Giannelle D. Zuliani T. Felser D.Lucchesi S.Montangero M. Trenti, L. Sestini. «Quantum-inspired machine learning on high-energy physics data»
Nature, 2021.

https://doi.org/10.1038/s41534-021-00443-w

Tree Tensor Network inference on FPGA

TTN

Optimized learning: SVD, bond
dimension tuning,
Safe post-training pruning: entropy

and correlation.

Linear algebra: only tensor
contractions involved.

Highly parallelizable inference
algorithm.

Performances comparable to classic
MIL. methods.

FPGA

Versatile programmable hardware.
Pipelined parallel computations.
Deterministic latency.

Limited resources: need for
compressed architectures and
optimal exploitation of logic.
Sub-microsecond latency: deployable
for online processing for HEP
experiments.

Tree Tensor Network inference on FPGA

I T T T T 1 Prediction
Dataset Iris Titanic | LHCb [31 | hls4ml ﬁ

Tree Tensor Network
‘E#HHF’

Features 16 16

Bond [2,4,8,8] [2,4,10,10]
dimensions

Classes 2 5

Accuracy 62% 73%
Memory 3 kB 6 kB

* Task: binary and multi classification. / \ / \ / \ f \

* Software: successfully trained several i e e e e e e e
TTN architectures.

e Hardware: inference offloaded in i ﬁ ﬁ ﬁ i i i ﬁ ﬁ ﬁ i i ﬁ i ﬁ i

FPGA and Vﬂhdﬂt@d. qu PTu Ty Qe PTe Te Gx PTx Tm Qk PTk Tk Gp PTp Tp Qjet

[3] L. Borella, A. Coppi, J. Pazzini, A. Stanco, M. Trenti, A. Triossi, M. Zanetti «Ultra-low latency quantum-inspired machine learning predictors implemented on
FPGA»,

https://arxiv.org/abs/2409.16075

Tree Tensor Network inference on FPGA

1. FPGA 1s programmed with O

architecture-specific firmware. o — -

2. Software-trained weights are
loaded on static blocks of RAM.

3. Data that needs to be classified 1s

streamed to the FPGA. Tensor contraction is the base operation that needs to be
defined on FPGA: choose different degrees of parallelization
and iterate it for different layers.

X X X
D D . é zZ; = Z XiViVijk
J.k

Digital Signal Processor (DSP) is the resource devoted to
arithmetic calculations on FPGA.

4. Feature mapping is applied on
input data and implemented in
hardware with LUTs.

5. Full contraction with the TTN
architecture.

6. Retrieve final probability and
classify sample.

Full Parallel implementation

Mult1

Mult2

Sumi Sumo0O

Partial Parallel implementation

L
L L
N _ 2 .
latency = ZQ + logs (X% 1) DSP = Z X?—l(Xﬁ + 1)2_E latency = Z Xio1+xi +1
ckd L4 L+ [+ L+ L+ Lt |
Input % AR L N
Z U — 2 -
N Y7 DSP = (Xiﬁ 1_|_1)2§_
7 10 7 =1
%,
7000 7
S S N YO T Y T T I Y O T O O O
2 o V7 Input
A 101 V7 Mult1 J J{ X
ﬁ {:z ? Mult2 a \ b ¥/
e Muit2 74 _a X b ¥
AT Mult2 X a X b ¥/
77 0002001 7 Mult2 74 _a A\ b X/
77X 010:011 7 Sumo X afa)fa)al/
X 1004101)7
Z o Y Sumi 74 b X b X b)b}
Output 7 % Output X ¥

TTN: latency vs input features

s Pabs=1 |X 0=8,D_0=2,0=1]

= PP.Atpsp=1 T

o o = = &
(=]] [~ 3%} L.
Time [us] (@250MHz)

T
=
-

T
=
%]

80 160
N features

TTN: latency vs feature dimension

120

o
[=]

® FP.Aose=1
& PP Afpsp=1

‘N:lﬁ,x[,:-ﬂ,,o:l}

D feature dimension

TTN: latency vs bond dimension

= Faps=1|N=16,D0=2,0=1|

& PPALpsp=1

D.lﬁ..—lllll-llll
" T T T T

oW e
I Y] =1
Time [us] (@250MHz)

T
=
=]

Q 5 10 15 20 25 30
Xo bond dimension

TTN: latency vs classes

0.0
35

m- FP.AIose=1
- PPAfpgp=1

‘N=16.D=2,X¢.=4|

O output classes

Resources

Number of UsPs

TTN : resources vs input features

Number of DSPs

30x10°

Dg=2,Xg=4,0=1 #- Full Parallel

= Partial Parallel

-~

KCU1500 1

&0 80 120
N features

TTN : resources vs feature map

N=16,X,=8,0=1 & Full Parallel

25x10° 1

20x107

15x10°% 1

10x107 1

—|— Partial Parallel

ECULS00

5x10°% o

T T
10 12
D feature dimension

Number or UsFs

Number of DSPs

TTN : resources vs bond dimension

14x107% 4

N=16,D3=2,0=1 = Full Parallel

12x107 4

10x10% -

8x107

6x10° o

= Partial Parallel

KCU1I500

4x10° 4

2x10° 4

0+

Xg Bond dimension

TTN : resources vs classes

N=16,Dg=2,Xg=8

= Full Parallel

—m— Partial Parallel

ECUL1S00

0O output labels

+ 1.85 110

Quantization |..]l|.,|][.,|1]l|.,|u['1|1]l|.,|1[1|1

'.'1 [F

* Real values represented as 16 bits

Hardware accuracy fixed bo;
1xe p01nts.

* The choice for numeric precision
is model-specific.

[=)]
Ln

h
o

* Avoid DSP usage for number of
fractional bits below hardware-

i
n

X
==
0
©
[
S
O
<[

specific threshold.

n
(=

* Additional network compression

100 samples=12%dataset

L S s without loosing classification
Fractional bits accuracy.

Firmware 5 Mapping
ﬁ Tree
5 Counter
* Firmware described in VHDL
using Vivado 2024. HOMA
i
* Project developed on an g F— Slice Reg
KCU 1500 Kintex UltraScale Si
ice Reg

board.

* Development board plugged on

host PC with PCle
communication.
KCU1500

* AXI Lite and AXI Stream Kintex Ultrascale
protocols with global clock
frequency of 250MHz.

* OOCTTN implementation
reaching 500 MHz.

Results of inference

SW/HW Output Comparison

SW/HW Output Comparison

Fractional Bits=14 i
Quant. Ermror=6.103x10">) Fractional Bits=14

— -3 Quant. Error=6.1e-05
SD=5.792x14 SD=0.000671

o
Ln
I
e
(=]
w

SW Output
o
S

4
=3
o
|
=
o
=
u

<
o

0.0 0.5 .' : .) 0.02 0.03
HW Output HW Output

* LHCb dataset, 16 features, 500 samples
* Input: 10 -> Output (average): 10 (4 LSBs)
* Hw accuracy drops with less than 10 frac. bits

* Titanic dataset, 8 features, 100 samples
* Input: 10 -> Output (average): 107 (7 LSBs)
* Hw accuracy drops with less than 4 frac. bits

Phase Space TTN

o Full Parallel

COHCluSiOﬂS ; |N=[4,8,16,32,64]

' 1X=[4,8.16,32.64]

D=[2,4,6,8,10] » Partial Parallel

* Trained TTN architectures and
derived accuracies comparable
with NN counterparts.

. VHDL firmware for T'TN inference
with different degrees of
parallelization.

Number of DSP

* Deterministic projections of

resources and latency values for
different T'TN architectures.

* Exactreplication of software Dataset TTN DSP Latency
behaviour in FPGA hardware. _
Iris PP [2,4,1] 1%

Titanic FP[2,4,8,1] 8%
* Inference algorithm latency below 1
us: possible deployment in trigger

LHCb FP[2,4,8,8,1] 36.5%
pipeline of HEP experiments. hls4ml FP[2,4,10,10,5] 66.38%

Thank youl

	Slide 1: Tree Tensor Network predictors implemented on FPGA for ultra-low latency inference.
	Slide 2: Tree Tensor Networks for machine learning
	Slide 3: Tree Tensor Network for machine learning
	Slide 4: Tree Tensor Network inference on FPGA
	Slide 5: Tree Tensor Network inference on FPGA
	Slide 6: Tree Tensor Network inference on FPGA
	Slide 7: Full Parallel implementation
	Slide 8
	Slide 9
	Slide 10: Quantization
	Slide 11: Firmware
	Slide 12: Results of inference
	Slide 13: Conclusions
	Slide 14: Thank you!

