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In a nutshell 

• We want to find a representation of the ground state wavefunction of the 
SU(2) Yang-Mills Hamiltonian 


• Our end product will be a neural network that will do the following:


• When given a specific configuration of the degrees of freedom, it tells us 
the amplitude this state has in the wavefunction*


• So, not the full wavefunction, but we can get each element as we see fit 


• This is enough to do physics
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*This is similar to the role of the action in standard lattice QCD



In a nutshell
(Example from a spin model)

• For two spins, the ground state wavefunction in a given basis may look like




• Once our network is trained, we should be able to ask:


• Me: “I am looking at the state, what’s its amplitude?”


• Network: “It’s  mate” 


• Me: “Nice one, cheers”
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Machine learning for lattice 
gauge theories 
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This is not an exhaustive list

(Nice review) Aarts, G. et al. Nat. Phys. Rev. 1-10



Phase transition detection
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Neural network correctly identifying confinement phase transition 

despite only being trained far from the transition.

From Boyda, D. L. et al. Phys. Rev. D 103, 014509

Principle components acting as an order parameter of the confinement 
phase transition.

From Wetzel, S.J., Scherzer, M. Phys. Rev. B 96, 184410




Configuration generation (Euclidean)
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Diffusion models generating the same distribution found by 

standard methods.

From Zhu,  Q. et al. NeurIPS 2024, arXiv:2410.19602

Normalising flows generating ensembles that explore the 

Hilbert space more evenly than conventional methods.

From Kanwar, G. et al. Phys. Rev. Lett. 125, 121601



SU(N)-specific architectures 
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Gauge equivariant convolutional network identifying the average 

Wilson loop when a standard convolutional network fails.

From Favoni, M. et al. Phys. Rev. Lett. 128, 032003

Normalising flows generating ensembles that explore the 

Hilbert space more evenly than conventional methods.

From Kanwar, G. et al. Phys. Rev. Lett. 125, 121601 & this work



Drawback
These are all using the Lagrangian formulation of SU(N)

• Time is imaginary, discrete, and the number of points in time must be set a 
priori 

• Many physical observables are only accessible through some contrived 
correlators


• Any imaginary component in the action causes issues (the sign problem)
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Learning the wavefunction (Hamiltonian)
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Observing finite size scaling of a phase transition 

in Z2 gauge theory. 

From Apte, A. Phys. Rev. B 110, 165133

Computing the ground state energy of 2+1 dimensional 

U(1) gauge theory. 

From Luo, D. arXiv:2211.03198

& this work



Lagrangian vs Hamiltonian formalisms 
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Neural network



Neural quantum states
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Variational Monte Carlo



Variational wavefunction 
Variational quantum states

• Let 


• 2 qubits, spin basis: 


• “Finding ground state” == finding a function that gives four numbers

ψ = ∑
i

ai |ϕi >

ψ = a0 |00 > + a1 |01 > + a2 |10 > + a3 |11 >

ψ = ∑
i

f(ϕi) |ϕi >
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Neural quantum states
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Carleo, G.,  Troyer, M., Science 355, 602

(Nice review) Medvidović, M., Moreno, J.R., Eur. Phys. J. Plus 139, 631
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Neural quantum states
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Neural quantum states

• Want to learn the function, , by using a neural networkf
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Neural quantum states

• Want to learn the function, , by using a neural networkf

fθ(ϕi)|ϕi > Neural network 
θ
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Carleo, G.,  Troyer, M., Science 355, 602

(Nice review) Medvidović, M., Moreno, J.R., Eur. Phys. J. Plus 139, 631



SU(2) Yang-Mills in mostly 
equations
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Pμ,ν(x) = Uμ(x)Uν(x + μ)U†
μ(x + ν)U†

ν (x)

Uμ(x) ∈ SU(2)
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Pμ,ν(x) = Uμ(x)Uν(x + μ)U†
μ(x + ν)U†

ν (x)

Uμ(x) ∈ SU(2)

ℋ = −
1
2 ∑

l

∇2
l + λ∑

p

(1 −
1
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Kogut, J., Susskind, L. Phys. Rev. D 11, 395

Uμ(x) = exp(−iσaAa
μ(x))

∇ ∼
∂

∂Aμ

Laplace-Beltrami operator on S3
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U = the whole configuration of         sUμ(x)U

< ψ |ℋ |ψ > ≈
1
n ∑

p(U)

ℋ[U]

If         is the ground state wavefunction, this overlap is the ground state energyp(U)
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The Ansätze  
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(  from the other slides)fθ(U)



Mean-field plaquette Ansatz
(Simple yet good model)

• No neural network, but we guess our wavefunction coefficients through


= the product of exponential of traced plaquettes


• Notably, this is gauge invariant (the wavefunction does not change under a 
gauge transformation of    )
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f(U) = ∏
p

eα 1
2 ReTrPp

U

∏Tr



Gauge equivariant transformer
(Our main contribution)
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Results
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Ground state energy

• 4x4x4 


• Correlation energy:


EC =
Eequivariant − EMF

EMF
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Plaquette expectation
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Pμ,ν(x) = Uμ(x)Uν(x + μ)U†
μ(x + ν)U†

ν (x)

< P > =
1
2

ReTr[Pμ,ν(x)]



What now?
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Future outlook

• Large 2D simulations 


• Phase transitions through non-trivial Wilson loops


• Finite size effects


• More complicated observables like the Creutz ratio


• Time evolution? 
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Thanks for listening 
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Backup slides
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Equivariant layer

• We want an ‘image to image’ like function that acts on a lattice of links and 
outputs a lattice of transformed links


• We want this to be gauge equivariant, meaning


• If the action of a gauge transformation is given by  and the equivariant 
layer is given by , then we require 





g(U)
f(U)

f(g(U)) = g( f(U))
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Equivariant layer 

• We cannot simply act on a link alone, it doesn’t have the right transformation 
properties for the equivariant relation to hold


• But, the plaquette does


• Notably, the eigenvalues of the plaquette are invariant under gauge 
transformations


• The eigenvalues of  are the same as those of  
[which is ]


• We exploit this to make our network gauge equivariant 

Pμ,ν(x) Ω(x)Pμ,ν(x)Ω†(x)
g(Pμ,ν(x))
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Equivariant layer 

• So, within our layer, we do:


Uμ(x) → Pμ,ν(x) → λP → λ′￼P → P′￼μ,ν(x) → U′￼μ(x)
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Eigenvalue decomposition

Pμ,ν(x) = Uμ(x)Uν(x + μ)U†
μ(x + ν)U†

ν (x)

Eigenvalue recomposition
Transformer

U′￼μ(x) = P′￼μ,ν(x) * (Uν(x + μ)U†
μ(x + ν)U†

ν (x))−1


