

Some recent progress in the description of atomic nuclei using quantum computers Denis Lacroix

Many-body physics and QC - T. Ayral, P. Besserve, D. Lacroix, and E.A. Ruiz Guzman, Quantum computing with and for many-body physics, Eur. Phys. J. A 59 (2023)
Symmetry and QC - D. Lacroix, A. Ruiz Guzman and P. Siwach, Symmetry breaking/symmetry preserving circuits and symmetry restoration on quantum computers Eur. Phys. J. A 59 (2023)
CERN Quantum Initiative - Di Meglio et al., Quantum Computing for High-Energy Physics: State of the Art and Challenges, PRX Quantum 5, 037001 (2024)

Perez-Obiol et al, Scientific Reports 13 (2023)

Developing variational approaches based on symmetry-breaking (SB)/symmetry restoration (SR)

BCS state in a circuit

Example of mixing for 12 qubits (with IBM qiskit)

But ultimately symmetries should be restored!

But ultimately symmetries should be restored!

Non-destructive counting on a quantum computer

D. Lacroix, "Symmetry-Assisted Preparation of Entangled Many-Body States on a Quantum Computer", PRL 125, 230502 (2020).

Standard Quantum Phase estimation

Iterative Quantum Phase estimation

16 qubits, N = 8

Exploration of different methods for the symmetry restoration

Exploration of different methods for the symmetry restoration

optimizer

Ruiz Guzman and Lacroix, PRC 105 (2022)

Usefulness of the symmetry breaking strategy-symmetry restoration

To obtain expressive ansätze

Quantum Phase estimate on energy after convergence

Ε

 E^{GS}

HF

Q-VAP

But nuclei have both spin (s) and isospin (t) (neutron/proton)

This increases the number of qubits $S_z, \ S^2, \ \pi$

This increases the number of symmetries that could be broken

 S_z, S^2, T_z, T^2, π

Symmetry-breaking states become extremely hard to control Symmetry restoration becomes very demanding

J. Zhang, PhD thesis (2025).

Use of adaptative methods

And try to control symmetry breaking

Iterative construction of the ansatz

Grimsley, et al, Nat. Commun. 10 (2019)

$$\Rightarrow$$
 Start from a state $\ket{\Psi_0} = \ket{n=0}$

Built iteratively the ansatz such as:

$$|n
angle=e^{i heta_nA_n}|n-1
angle=\prod_{k=1}^n e^{i heta_kA_k}|0
angle$$
 Such that $A_n\in\{O_1,\cdots,O_\Omega\}$

S

ADAPT-VQE applied to the Superfluid problems: only spins

Zhang, Lacroix, Beaujeault-Taudière, PRC 110, 064320 (2024)

Extension to spin and isospin

Is breaking symmetries always a good idea?

Extension to the proton-neutron pairing Hamiltonian problem

$$H = \sum_{i=1}^{n_B} \left[\varepsilon_{i,n} (\nu_i^{\dagger} \nu_i + \nu_{\bar{i}}^{\dagger} \nu_{\bar{i}}) + \varepsilon_{i,p} (\pi_i^{\dagger} \pi_i + \pi_{\bar{i}}^{\dagger} \pi_{\bar{i}}) \right]$$

$$-\sum_{T_z=-1,0,1}g_V(T_z)\mathcal{P}_{T_z}^\dagger\mathcal{P}_{T_z}$$

$$-\sum_{S_z=-1,0,1}g_S(S_z)\mathcal{D}_{S_z}^\dagger\mathcal{D}_{S_z}.$$

Different Hamiltonian limits

S_z/T_z	Isoscalar			Isovector		
Case	-1	0	1	-1	0	1
1				\checkmark		\checkmark
2		\checkmark			\checkmark	
3				\checkmark	\checkmark	\checkmark
4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Different operator pool in ADAPT-VQE breaking or not symmetries

	Particle number	Seniority	Parity
H-pool	\checkmark	\checkmark	\checkmark
QEB-pool	\checkmark	×	\checkmark
Qubit-pool	×	×	\checkmark

Zhang, Lacroix,Beaujeault-Taudière, PRC 110, 064320 (2024)

Specific methods to improving convergence

Going closer to nuclei: adding isospin

Zhang, Lacroix, Beaujeault-Taudière, PRC 110, 064320 (2024)

Spectral methods

Conclusions and outlook

- E. A. Ruiz Guzman
- J. Zhang

S. Aychet Claisse Y. Beaujeault-Taudiere

Lawrence Livermore National Laboratory

M. O. Hlatshwayo

P. Siwach

T. Ayral

P. Besserve

M. Mangin Brinet

Vectern

E. Litivinova

A. Roggero

