Quantum Chebyshev generative modeling for Fragmentation functions

based on:

Jorge J. Martinez de Lejarza¹, Hsin-Yu Wu^{3,5}, Andrea Gentile⁵, Germán Rodrigo¹, Oleksandr Kyriienko^{3,4,5}, Michele Grossi², In preparation

Speaker:

Jorge Martínez de Lejarza

QT4HEP 2025 – 23/01/2025

23.01.2025

Jorge Martínez de Lejarza QT4HEP25

Hadronization: Partons \rightarrow Hadrons Motivation: Hadronization K^+ Hadrons Π^{-} Π^+ K^{-}

Particle Colliders (LHC)

Proton content

Partons: quarks and gluons

color particles QCD

Motivation: Fragmentation functions (FFs)

> What are FFs?

 $D_i^h(z,Q) \propto Prob(parton(i) \rightarrow hadron(h))$

 $z \equiv$ momentum fraction $Q \equiv$ energy scale

> Why are important?

Compute integrals \rightarrow predictions of observables (cross-sections)

- How are determined?
 - Statistical and ML methods to learn FFs from data
 - $D_i^h(z,Q_0) \propto z^{\alpha}(1-z)^{\beta}$
 - Caveat: Interpolation for Q solving DGLAP evolution equations

$$\frac{d\sigma}{dz}(z,Q) \propto D_i^h(z,Q)$$

Motivation: Quantum Generative Models (QGM)

4. Examples: QGANs, QCBM, QAE, QChGM

23.01.2025

Quantum Chebyshev Transform: Mapping, Embedding, Learning and Sampling Distributions: Chelsea A. Williams, Annie E. Paine, Hsin-Yu Wu, Vincent E. Elfving, Oleksandr Kyriienko, arXiv:2306.17026

Quantum Chebyshev Generative Models

> Chebyshev Feature map:

> Chebyshev polynomials: $T_k(x) \equiv \cos(k \arccos(x))$ > Quantum state with Cheb. poly. as **amplitudes**

$$|\tau(x)\rangle = \frac{1}{2^{N/2}}T_0(x)|0\rangle + \frac{1}{2^{(N-1)/2}}\sum_{k=1}^{2^{N-1}}T_k(x)|k\rangle$$

> The feature map such $\hat{\mathcal{U}}_{\tau}(x)|0\rangle = |\tau(x)\rangle$

Orthogonal at the nodes $x_j^{\text{Ch}} := \cos(\pi/2(2j+1)/2^N)$

Quantum Chebyshev Transform: Mapping, Embedding, Learning and Sampling Distributions: Chelsea A. Williams, Annie E. Paine, Hsin-Yu Wu, Vincent E. Elfving, Oleksandr Kyriienko, arXiv:2306.17026

Quantum Chebyshev Generative Models

> Quantum Chebyshev Transform:

➢ Need a map between Cheb ↔ Computational basis

• One can **go back** to computational basis (*f*):

$$\hat{\mathcal{U}}_f = \hat{\mathcal{U}}^{\dagger}_{\text{QChT}} \hat{\mathcal{U}}_{\tau}(x)$$

$$\hat{\mathcal{U}}_{\text{QChT}} = \sum_{j=0}^{2^{N}-1} |\tau(x_j^{\text{Ch}})\rangle \langle x_j|$$

Quantum Chebyshev Generative Models

> Workflow of the model:

Simulation setup:

- > Analyze FF data: $D_{u^+}^h, D_{d^++s^+}^h, D_{c^+}^h, D_{g^+}^h$ with $h = \pi^{\pm}, K^{\pm}$ for $z \in [0.01, 1], Q \in [1, 10000]$
- > Quantum simulation: → per variable:
 4 qubits, 3 ansatz layers=16 parameters
- > Optimizer: ADAM, iterations=10000, learning rate \in [0.1,1]
- Data from: <u>http://lhapdf.hepforge.org/</u>
 - NNF10_PIsum_nnlo
 - NNF10_KAsum_nnlo

LHAPDF6: parton density access in the LHC precision era: Andy Buckley, James Ferrando, Stephen Lloyd, Karl Nordstrom, Ben Page, Martin Ruefenacht, Marek Schoenherr, Graeme Watt, *Eur.Phys.J.C* 75 (2015) 132

> Training and sampling:

 \succ Example $D_g^{\mathrm{K}^{\pm}}$:

> Training and sampling:

1 extra qubit for variable

Quantum

interpolation

s = 1

1.0

2.0

1.5

1.0

value

23.01.2025

 \succ All the results: Fragmentation Functions of K^{\pm} Target $D_{d^++s^+}^{K^\pm}(z,Q)$ Target $D_a^{K^{\pm}}(z, Q)$ Target $D_{h^+}^{K^\pm}(z,Q)$ Target $D_{c^+}^{K^\pm}(z,Q)$ Target $D_{u+}^{K^{\pm}}(z,Q)$ (a) Target $D_a^{K^{\pm}}$ (b) Target $D_{h^+}^{K^{\pm}}$ (c) Target $D_{c^+}^{K^{\pm}}$ (d) Target $D_{d^++s^+}^{K^{\pm}}$ (e) Target $D_{u^{\pm}}^{K^{\pm}}$ Extended sampling $D_{d^++s^+}^{K^\pm}(z,Q), s=1$ Extended sampling $D_a^{K^{\pm}}(z, Q), s = 1$ Extended sampling $D_{h+}^{K^{\pm}}(z, Q), s = 1$ Extended sampling $D_{c^+}^{K^\pm}(z,Q), s=1$ Extended sampling $D_{u+}^{K^{\pm}}(z, Q), s = 1$ Det: ve (f) Sampling $D_q^{K^{\pm}}$ (h) Sampling $D_{c^+}^{K^{\pm}}$ (i) Sampling $D_{d^++s^+}^{K^{\pm}}$ (j) Sampling $D_{u^+}^{K^{\pm}}$ (g) Sampling $D_{b+}^{K^{\pm}}$ 10 23.01.2025 Jorge Martínez de Lejarza QT4HEP25

 \succ All the results: Fragmentation Functions of π^{\pm}

Jorge Martínez de Lejarza QT4HEP25

> Study of correlations:

Correlations circuit

Example $D_q^{\pi^{\pm}}$: 4 qubits, 3 layers, 10000 iter., learning rate $\in [0.1,1]$ W/CC: $R^2 = 0.99$ W/o CC: $R^2 = 0.85$ $D_g^{\Pi^{\pm}}$ value value $D_g^{\Pi^{\pm}}$ 4000 0 0.2 0 0.2

> Study of correlations:

Extending findings of:

Better than classical? The subtle art of benchmarking quantum machine learning models: Joseph Bowles, Shahnawaz Ahmed, Maria Schuld, arXiv:2403.07059

They: classification

We: multivariate prob. distr.

"Quantumness" help the models to learn

Similar to: Yacine Haddad's poster

Comparison all FF

23.01.2025

Outlook

Classical Output

 $f(x;\theta)$

Cost

 $\mathbb{E}[Y - f(x;\theta)]$

Update $\theta_{i-1} \rightarrow \theta_i$

- > Apply **QML** to analyze correlations in physical processes
- 3. Correlations help the quantum model to learn

2. Efficient **sampling** with extended register Natural quantum interpolation

1. Succesfully extended **QChGM** to **learn FFs**

Quantum

 $|x\rangle$ -

 $U(x;\theta)$

Quantum circuit

State preparation

 $x \rightarrow |x\rangle$

 $U(x; \theta_i)$

Thank you for your attention!

If questions drop me an email: jormard@ific.uv.es

