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GOALS AND OBJECTIVES

Quantum error correction

Quantum computers can
undergo errors.

We can define
symmetries and

conserved quantities.

If something is violated,

we know an error — - T -
- ~
occurred. ~
N
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GOALS AND OBJECTIVES

Quantum error correction Gauge Theories

Quantum computers can Gauge Theories are
undergo errors. physical theories with a
gauge symmetry, which is

We can define a local symmetry.

symmetries and
conserved quantities.

If something is violated,
we know an error
occurred.

arXiv:2405.19293
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GOALS AND OBJECTIVES

Gauge Theories Linking two fields

Quantum computers can Gauge Theories are We can use the Gauge
undergo errors. physical theories with a symmetry as a symmetry to
gauge symmetry, which is do error correction.
We can define a local symmetry.
symmetries and If it is violated, an error

conserved quantities. occurred.

If something is violated,
we know an error
occurred.

QUESTIONS: what type and
how many errors can we

correct with the gauge

symmetry?

arXiv:2405.19293
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-
QUANTUM ERROR CORRECTION

Classical computes:

bit: 0,1

Possible errors:

0—1

bit-flip:
1 -0

We can correct errors
adding redundancy:

Or = 000
010 — 000

Wi
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QUANTUM ERROR CORRECTION

Classical computes: Quantum computes:
bit: 0,1 gbit: |¢¥) = al0) + b|1)
Possible errors: Possible errors:
el 0—1
- - . : 0) — |1
bit-flip: 0 bit-flip: ) )
1) — |0)
We can correct errors
adding redundancy: 0) — |0)
hase-flip:
0z = 000 " T

010 — 000
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QUANTUM ERROR CORRECTION

Classical computes: Quantum computes:
bit: 0,1 gbit: |¥) = a|0) + b|1) 0),;, — 0.0.0z)
Possible errors: Possible errors:
pit-flip: 0 L o) = (1) 0) — 000
1 —0 bit-flip:
1) — |0)
We can correct errors Since we have 2
adding redundancy: 0) — |0) possible errors, we
phase-flip:
0z = 000 1) — —|1) need more
010 N OOO redundancy



MEASUREMENT

Which operators are we alloed to measure
without making the wavefunction collapse?
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MEASUREMENT

Which operators are we alloed to measure We can measure the
without making the wavefunction collapse? parity between 2 qubits:
Remember: 44 OO> ~ ‘OO>
Z|0) = |0) Z7|01) = —|01)
Z|11) = —|1) Z7Z]10) = —|[10)
ZZ|11) = |11)

Without destroying
superpositions:

ZZ(|00) +|11)) = (]00) 4 [11))
Z2(01) + 10)) = —(|01) + |10))
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MEASUREMENT

Which operators are we alloed to measure We can measure the
without making the wavefunction collapse? parity between 2 qubits:
ZZ|00) = |00)
he logical states: remember:
The log . 210) — [0 ZZ7|01) = —|01)
0), — |000) Z|1) = —[1) 27|10) = —|10)
Stabilizers: Sl SQ et Without destroying
' _ .\ : superpositions:
51 = 2123 Z7(/00) + [11)) = (]00) + [11))
_ - - 2
S2 = 2223 ZZ(101) + [10)) = —(|01) + |10))




LATTICE GAUGE THEORIES

L2 . L1 . L, . Li+1 Sites can be:
0)

empty

full 1)

On links there i1s the Gauge
field with 2 possible values:

Z€ero O>
one ].>




LATTICE GAUGE THEORIES

L2 . L1 . L, . Li+1 Sites can be:

empty O>
The symmetry: full 1)
“1= AL Zs L feld with 2 possible values
Gl"(m — "¢> Zero O>
one 1>
@\



LATTICE GAUGE THEORIES

Lo . L} . L, . L+

The symmetry:
G, =25, ,4s/21,

GZ(XSZ|¢>) = —(Xs[¥))
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LATTICE GAUGE THEORIES

L2 . L1 . L . Li+1 + - +

O @LO—

The symmetry:
G, =25, ,4s/21,

GilY) = [¥)
— Gi(X z _ _(x |
N alp) = =Xl
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LATTICE GAUGE THEORIES

L2 . L1 . L . Li+1 + - +

—O-®--O—
The symmetry: G
Gl — ZLl_1ZSzZLl '(la' .
L Crtarin) = (Xl —OPrO
@ (X, — S, G



FUTURE WORK

arXiv:2405.19293

Fault-tolerant

@ more spatial dimensions </>quantum simulation

@) larger electric cutoff

? non-abelian theories

(Trotter, QSP)

|#)

6itchj —

H

e’th — eithchj ~ I I 6itchj
J

) — H;

;
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FUTURE WORK

arXiv:2405.19293

Fault-tolerant

@ more spatial dimensions </>quantum simulation

- Trott p
& larger electric cutoff (Trotter, QSP)

. o 1Ht ithC.H. - ite EH.
? non-abelian theories e =e =it JNHe i
J

) H X
]

C‘/) “bosonization” of the it Hj _
) —| H;

Hamiltonian




CONCLUSIONS

arXiv:2405.19293

L2 ( S|-1) L . L, . L+
In this way we can save

We want to simulate a system G =21,,25721, memory, and easily perform
with a gauge symmetry quantum simulations

We can use the gauge
symmetry to detect and J

correct every X error

eth — eithCjHj ~ I I eithHj
¢ more spatial dimensions j

N\

@ larger electric cutoff

? non-abelian theories 1tc; H ; g I : =
\ ¢ fault-tolerant time evolution € _|¢) — H;
\\‘ ¢) bosonization
A
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MEASUREMENT AND CORRECTION
G = ZL1—1ZSZZL1

Lo . L . L, . L+
==& Gi|lv) = |9)

Gl—l Gl Gl 1 |€rTror location We can correct every X
In the system, but we
+ |+ | + none errorin '
cannot detect Z errors
— | = + L1
To correct Z errors we
T |~ T St can use more layers of
DN _ | — redundanc
\\\\&,{ + L Y



The hamiltonian, can be
written as

H = ZCjHj
J

The time evolution operator
we want to apply is

e’l:Ht — eit Zj CjHj

TIME EVOLUTION

To simplify the implementation,
we can break up the operator,
approximating it:

~ I I e’ithHj

e’l,t Zj CjHJ

J

This is the first-order Trotter
formula, and the error is:

eitH L I I eithHj
J

S:[Hjaﬂk]

<t*)
J

k

N\

So we need a way to
Implement the single
exponentials

But we can apply easily on
the system only the logical
operations

They correspond to Pauli
matrices on the logical
qubits



TIME EVOLUTION

To do this, let us assume to have an ancilla
qubit on which we can do arbitrary rotations,
ZthHj prepared in the following state:

|$) = cos(tc;)|0) + i sin(tc;)|1)

How do we implement

€

Assuming the Hamiltonian is
a sum of Pauli matrices: Then, the following circuit applies the right

et = cos(tc;) + isin(tc;) H, exponential

#) I H— A

In this way we move the problem of vy — H;
applying the exponential, to the problem

\ of preparing an ancilla qubit state
\\\\”:
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IMPLEMENTATION OF TROTTER

Why the following circuit
Implements the right exponential?

) I HEH A oy costte))|0) ) + isin(te,) 1) Hjlw)

) |9) = cos(tc;)[0)]4h) + isin(tc;)[1)]eh)

1 . 1
¥) — H; H — cos(te;) 7=(0) + D)) + isinlte;) —=(10) — [1D)H,ly)
1 1
= ——(cos(tc;) + isin(tc;)H;)|0)|¢) + —(cos(tc;) — isin(tc;)H;)|1)|v)
|$) = cos(tc;)|0) + isin(tc;)|1) \/j V2

. 1 .
= —= 00"y + —=[ne M y)

The circuit applies with probability 1/2 the right
exponential, with probability 1/2 its hermitian conjugate

\ We can apply always the right exponential with a cycle of
\\”1 oblivious amplitude amplification



HAMILTONIAN

. . . i I t
The starting Hamiltonian: Fermionic operators

H=m) (1)l + e (%] Qb + ¥}, Qvn) + 205 > _ P,
[ [ [

Field operators

In terms of Pauli matrices:

m
H=—) (-1)'1-(-1'Zz _
2 Z( a =1 Zs) Logical operations: X’O>L — ’1>L
¢ — Y N
+ 5 ;(1 +Z5Zs,,)Xs, X1, X5, + 2AE;ZLZ 7= 71 X[1), = |0),
X = X5,X1,Xs,., %\0>L =10)g,
Z|1>L — _|1>L

In terms of logical operations:
m

=3 Z(—l)l(l —Z11Z)) + % Z (1 — El—1§l+1)yl + 2Ag Zzl
l l

Wi



FULL ENCODING

3 qubits per site

@

@ /48\ @ ) 3 qubits per link
+) = —(|0) + [1))
7/ \&_, )/ V2

) = %(\m )
codewords stabilizers
> |+ + - = X1X
0) 1 | ) 51 1442 X|4) = [+)
‘-.\-- 1), — | ) 51 = X2 X3 X|-) = —|—)
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STABILIZER CODES

Let “P"” be the n-qubits

Define “S” the stabilizer
group as an abelian
subgroup of P

If we start with n physical qubits
we define n-k stabiliser operators

we will have a number of
codewords equal to

2n/2n—k _ 2k

@ So we will have k logical qubits

A codword is a state such
Pauli group that, for every element of S

Silz) = |z)

The element of S are traceless,
with eigenvalues +1 or -1

By adding an element to S, we
half the Hilbert space of
codewords

Logical operators are elements
of P that commute with S

They are 2k operators. Every
operator commute with all
other operators but one that
has to anti commute



