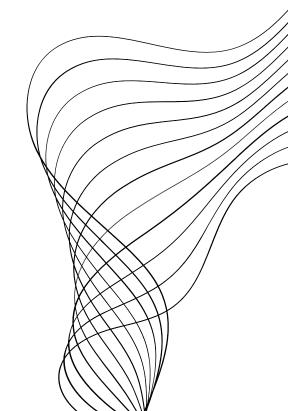
FAULT-TOLERANT SIMULATION OF LATTICE GAUGE THEORIES WITH GAUGE COVARIANT CODES

LUCA SPAGNOLI

UNIVERSITY OF TRENTO



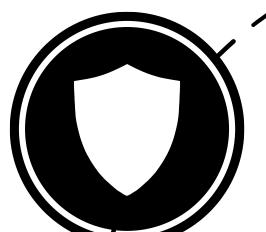
GOALS AND OBJECTIVES

Quantum error correction

Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.



arXiv:2405.19293

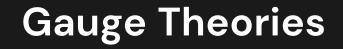
GOALS AND OBJECTIVES

Quantum error correction

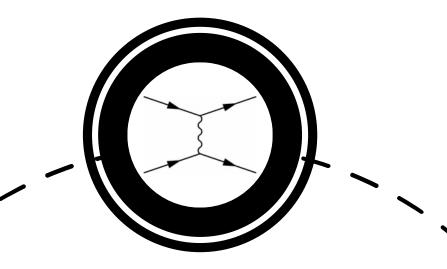
Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.



Gauge Theories are physical theories with a gauge symmetry, which is a local symmetry.



arXiv:2405.19293

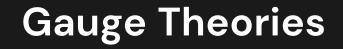
GOALS AND OBJECTIVES

Quantum error correction

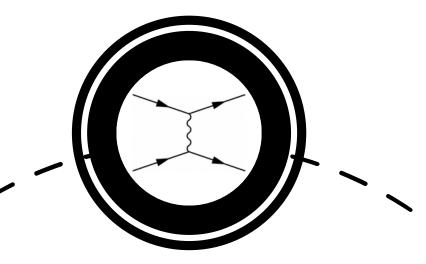
Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.



Gauge Theories are physical theories with a gauge symmetry, which is a local symmetry.



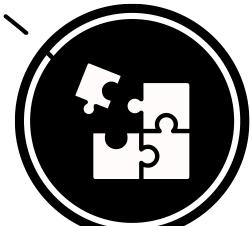
arXiv:2405.19293

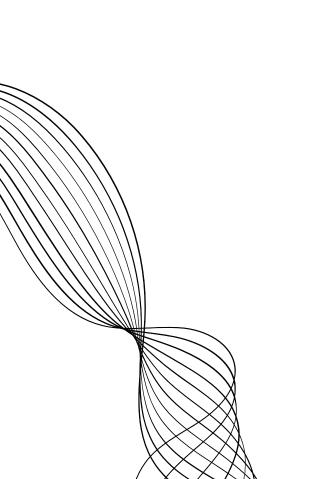
Linking two fields

We can use the Gauge symmetry as a symmetry to do error correction.

If it is violated, an error occurred.

QUESTIONS: what type and how many errors can we correct with the gauge symmetry?





```
Classical computes:
```

bit: 0,1

Possible errors:

bit-flip:
$$egin{array}{cc} 0
ightarrow 1 \ 1
ightarrow 0$$

We can correct errors adding redundancy: $0_L = 000$ 010
ightarrow 000

Classical computes: Quantum computes: qbit: $|\psi
angle=a|0
angle+b|1
angle$ bit: 0,1 Possible errors: Possible errors: bit-flip: $egin{array}{cc} 0
ightarrow 1 \ 1
ightarrow 0$ bit-flip: $egin{array}{cc} |0
angle
ightarrow |1
angle \ |1
angle
ightarrow |0
angle \ |1
angle
ightarrow |0
angle \ |1
angle
ightarrow |0
a$ We can correct errors phase-flip: $egin{array}{c} |0
angle
ightarrow |0
angle \\ |1
angle
ightarrow -|1
angle \end{array}$ adding redundancy: $0_L = 000$ 010
ightarrow 000

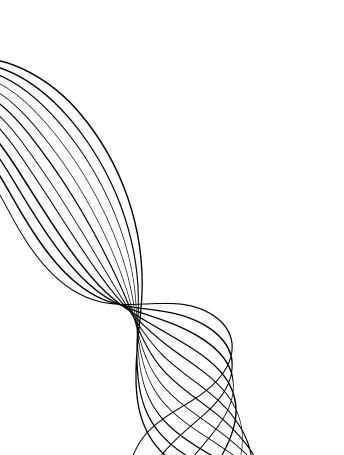
Classical computes: Quantum computes: qbit: $|\psi
angle = a|0
angle + b|1
angle$ bit: 0,1 Possible errors: Possible errors: bit-flip: $egin{array}{cc} 0
ightarrow 1 \ 1
ightarrow 0$ bit-flip: $egin{array}{cc} |0
angle
ightarrow |1
angle \ |1
angle
ightarrow |0
angle \ |1
angle
ightarrow |0
angle \ |1
angle
ightarrow |0
a$ We can correct errors phase-flip: $egin{array}{c} |0
angle
ightarrow |0
angle \\ |1
angle
ightarrow -|1
angle \end{array}$ adding redundancy: $0_L = 000$ 010
ightarrow 000

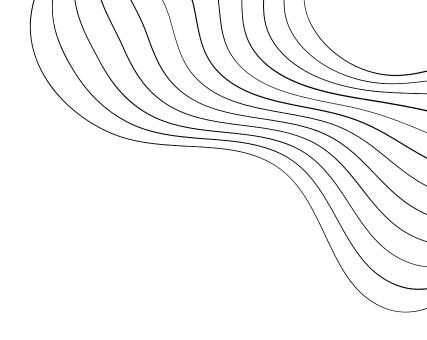
$egin{array}{ccc} ert 0 ightarrow LL ightarrow ert 0_L 0_L 0_L ightarrow \ & & \swarrow \ & & \swarrow \ & & 10 angle_L ightarrow ert 000 angle ightarrow ightarrow ert 0000 angle$

Since we have 2 possible errors, we need more redundancy

MEASUREMENT

Which operators are we alloed to measure without making the wavefunction collapse?



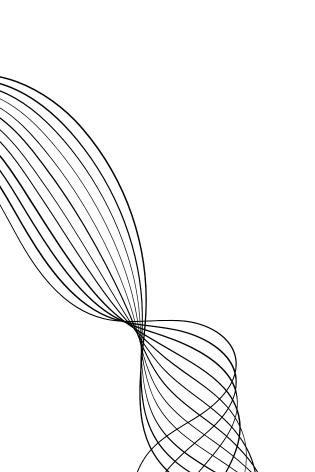


MEASUREMENT

Which operators are we alloed to measure without making the wavefunction collapse?

Remember:

$$egin{aligned} Z|0
angle &=|0
angle\ Z|1
angle &=-|1
angle \end{aligned}$$



We can measure the parity between 2 qubits:

 $egin{aligned} ZZ|00
angle &=|00
angle\ ZZ|01
angle &=-|01
angle\ ZZ|10
angle &=-|10
angle\ ZZ|11
angle &=|11
angle \end{aligned}$

Without destroying superpositions:

 $egin{aligned} ZZ(\ket{00}+\ket{11}) &= (\ket{00}+\ket{11})\ ZZ(\ket{01}+\ket{10}) &= -(\ket{01}+\ket{10}) \end{aligned}$

MEASUREMENT

Which operators are we alloed to measure without making the wavefunction collapse?

The logical states:

 $egin{array}{l} |0
angle_L
ightarrow |000
angle \ |1
angle_L
ightarrow |111
angle \end{array}$

Remember:

$$egin{aligned} Z|0
angle &=|0
angle\ Z|1
angle &=-|1
angle \end{aligned}$$

Stabilizers: $S_1=Z_1Z_2$ $S_2=Z_2Z_3$

S_1	S_2	error
-	+	1
_	_	2
+	_	3

We can measure the parity between 2 qubits:

 $egin{aligned} ZZ|00
angle &=|00
angle\ ZZ|01
angle &=-|01
angle\ ZZ|10
angle &=-|10
angle\ ZZ|11
angle &=|11
angle \end{aligned}$

Without destroying superpositions:

 $egin{aligned} ZZ(\ket{00}+\ket{11}) &= (\ket{00}+\ket{11})\ ZZ(\ket{01}+\ket{10}) &= -(\ket{01}+\ket{10}) \end{aligned}$

Line Control to the set of the s

On links there is the Gauge field with 2 possible values:

zero |0
angle one |1
angle

Let use the symmetry: LATTICE GAUGE THEORIES Line and the symmetry: **Lattice GAUGE THEORIES** Line and the symmetry: **Lattice GAUGE THEORIES** Line and the symmetry: **Lattice GAUGE THEORIES** Sites can be: $empty = |0\rangle$ full $|1\rangle$

The symmetry: $G_l = Z_{L_{l-1}} Z_{S_l} Z_{L_l}$

On links there is the Gauge field with 2 possible values:

 $G_l |\psi
angle = |\psi
angle$

zero |0
angle one |1
angle

LATTICE GAUGE THEORIES $\frac{L_{l-2}}{S_{l-1}} \frac{L_{l-1}}{S_l} \frac{L_l}{S_l} \frac{L_l}{S_{l+1}} \frac{L_{l+1}}{S_{l+1}}$

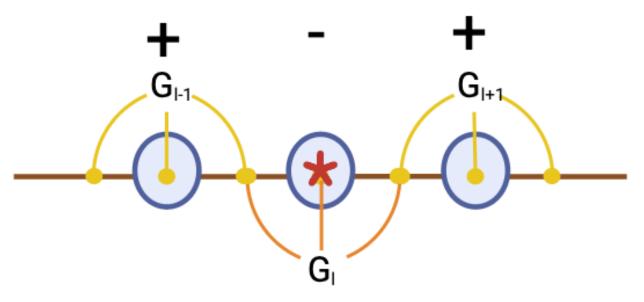
The symmetry: $G_l = Z_{L_{l-1}} Z_{S_l} Z_{L_l}$

 $G_l |\psi
angle = |\psi
angle$ $G_{l}(X_{S_{l}}|\psi
angle)=-(X_{S_{l}}|\psi
angle)$

LATTICE GAUGE THEORIES $\begin{array}{c|c} L_{l-1} \\ S_{l} \\ \end{array} \begin{array}{c} L_{l} \\ S_{l+1} \\ \end{array} \begin{array}{c} L_{l+1} \\ \end{array} \end{array}$ L_{I-2} **S**_{I-1}

The symmetry: $G_l = Z_{L_{l-1}} Z_{S_l} Z_{L_l}$

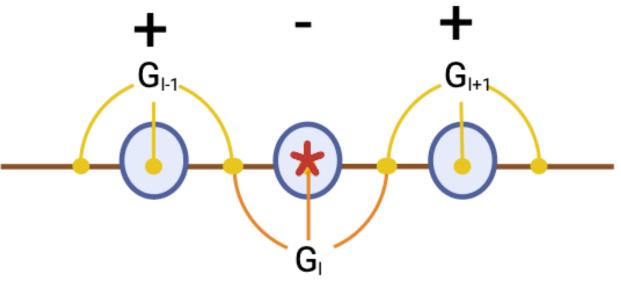
 $G_l |\psi
angle = |\psi
angle$ $G_l(X_{S_l}|\psi
angle)=-(X_{S_l}|\psi
angle)$

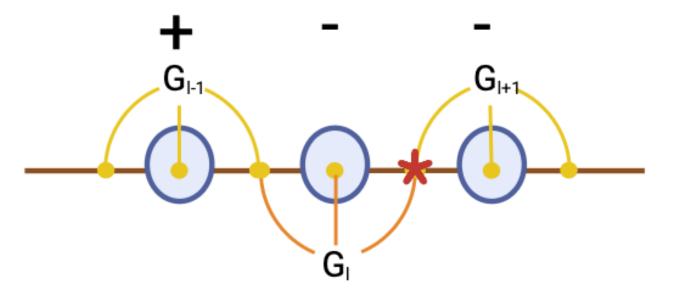


LATTICE GAUGE THEORIES L_{l-2} S_{l-1} L_{l-1} S_{l} L_{l} S_{l+1} L_{l+1} + G_{l-1} G_{l-1}

The symmetry: $G_l = Z_{L_{l-1}} Z_{S_l} Z_{L_l}$

 $egin{aligned} G_l |\psi
angle &= |\psi
angle \ G_l (X_{S_l} |\psi
angle) &= -(X_{S_l} |\psi
angle) \end{aligned}$

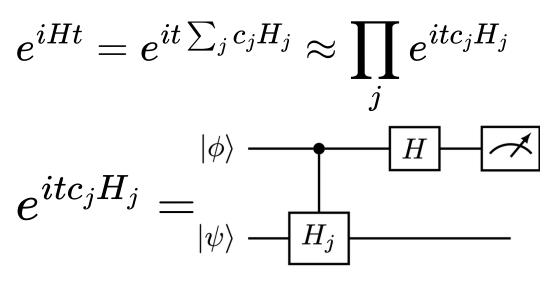




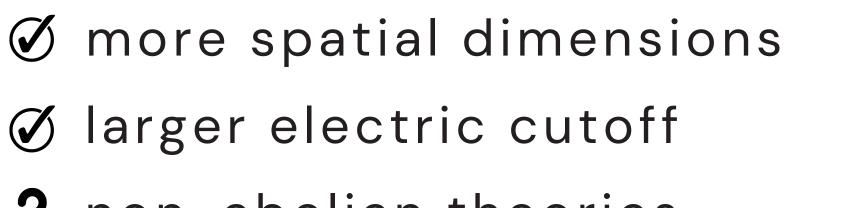
FUTURE WORK arXiv:2405.19293

more spatial dimensions
larger electric cutoff
non-abelian theories

Fault-tolerant quantum simulation (Trotter, QSP)



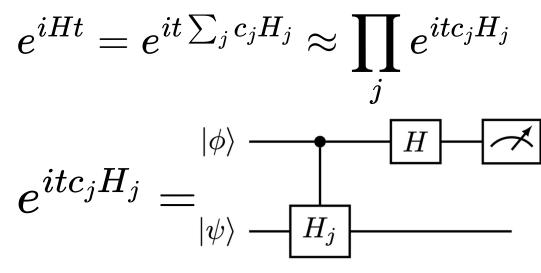
FUTURE WORK arXiv:2405.19293



? non-abelian theories

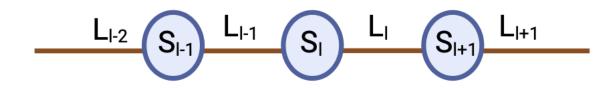
'bosonization" of the Hamiltonian

Fault-tolerant quantum simulation (Trotter, QSP)



CONCLUSIONS

arXiv:2405.19293



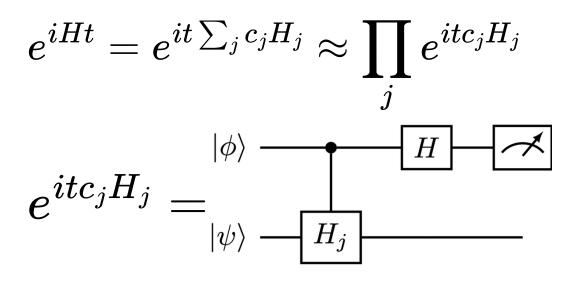
We want to simulate a system with a gauge symmetry

 $G_l = Z_{L_{l-1}} Z_{S_l} Z_{L_l}$

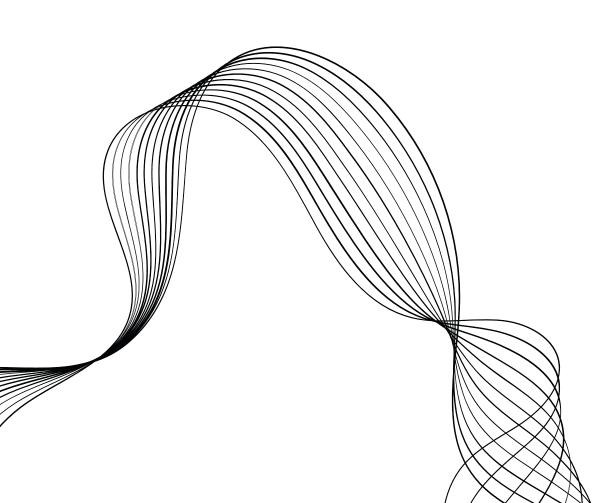
We can use the gauge symmetry to detect and correct every X error

- Ø more spatial dimensions
- ✓ larger electric cutoff
- **?** non-abelian theories
- ✓ fault-tolerant time evolution
- bosonization

In this way we can save memory, and easily perform quantum simulations



THANK YOU



G_{l-1}	G_l	G_{l+1}	error location
+	+	+	none
_	_	+	L_{l-1}
+	_	+	S_l
+	_		L_l

We can correct every X error in the system, but we cannot detect Z errors

To correct Z errors we can use more layers of redundancy

TIME EVOLUTION

The hamiltonian, can be written as

 $H = \sum_{i} c_{j} H_{j}$

The time evolution operator we want to apply is

 $e^{iHt}=e^{it\sum_j c_j H_j}$

To simplify the implementation, we can break up the operator, approximating it:

$$e^{it\sum_j c_j H_j}pprox \prod_j e^{itc_j H_j}$$

This is the first-order Trotter formula, and the error is:

$$\left| \left| e^{itH} - \prod_j e^{itc_jH_j} \right|
ight| \leq t^2 \sum_j \left| \left| \sum_k [H_j, H_j] \right|
ight|
ight| \leq t^2 \sum_j \left| \left| \sum_k [H_j, H_j] \right|
ight|
ight|
ight|
ight| \leq t^2 \sum_j \left| \left| \sum_k [H_j, H_j] \right|
ight|
ight|
ight|
ight|
ight|
ight|
ight|
ight| \leq t^2 \sum_j \left| \left| \sum_k [H_j, H_j] \right|
ight|
ig$$

 H_k

So we need a way to implement the single exponentials

But we can apply easily on the system only the logical operations

They correspond to Pauli matrices on the logical qubits

TIME EVOLUTION

How do we implement

 $e^{itc_jH_j}$

To do this, let us assume to have an ancilla qubit on which we can do arbitrary rotations, prepared in the following state:

 $|\phi
angle$

 $|\psi\rangle$

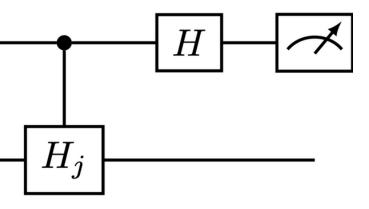
Assuming the Hamiltonian is a sum of Pauli matrices:

Then, the following circuit applies the right exponential:

 $e^{itc_jH_j} = \cos(tc_j) + i\sin(tc_j)H_j$

In this way we move the problem of applying the exponential, to the problem of preparing an ancilla qubit state

$|\phi angle = \cos(tc_j)|0 angle + i\sin(tc_j)|1 angle$



IMPLEMENTATION OF TROTTER

Why the following circuit implements the right exponential? $|\phi\rangle$ H

 H_i

 $|\phi
angle = \cos(tc_j)|0
angle + i\sin(tc_j)|1
angle$

 $|\psi\rangle$

$$egin{aligned} H & o \cos(tc_j) rac{1}{\sqrt{2}} (\ket{0} + \ket{1}) \ket{\psi} + i \sin(tc_j) rac{1}{\sqrt{2}} (\ket{0} - \ket{1}) H_j \ket{\psi} \ &= rac{1}{\sqrt{2}} (\cos(tc_j) + i \sin(tc_j) H_j) \ket{0} \ket{\psi} + rac{1}{\sqrt{2}} (\cos(tc_j) - i \sin(tc_j) H_j) \ket{1} \ket{\psi} \ &= rac{1}{\sqrt{2}} \ket{0} e^{itc_j H_j} \ket{\psi} + rac{1}{\sqrt{2}} \ket{1} e^{-itc_j H_j} \ket{\psi} \end{aligned}$$

The circuit applies with probability 1/2 the right exponential, with probability 1/2 its hermitian conjugate

- $|\phi
 angle|\psi
 angle=\cos(tc_j)|0
 angle|\psi
 angle+i\sin(tc_j)|1
 angle|\psi
 angle$
- $CH_{j}
 ightarrow \cos(tc_{j})|0
 angle|\psi
 angle+i\sin(tc_{j})|1
 angle H_{j}|\psi
 angle$

We can apply always the right exponential with a cycle of oblivious amplitude amplification

HAMILTONIAN

The starting Hamiltonian:

$$H = m \sum_{l} (-1)^{l} \psi_{l}^{\dagger} \psi_{l} + \epsilon \sum_{l} (\psi_{l}^{\dagger} Q_{l} \psi_{l+1} + \psi_{l+1}^{\dagger} Q_{l}^{\dagger} \psi_{l}) + 2\lambda_{E} \sum_{l} P_{l}$$
Field operate
In terms of Pauli matrices:

$$H = \frac{m}{2} \sum_{l} (-1)^{l} (1 - (-1)^{l} Z_{S_{l}})$$
Logica

$$+ \frac{\epsilon}{2} \sum_{l} (1 + Z_{S_{l}} Z_{S_{l+1}}) X_{S_{l}} X_{L_{l}} X_{S_{l+1}} + 2\lambda_{E} \sum_{l} Z_{L_{l}}$$
 \overline{Z}_{l}
 $\overline{X}_{l} = \overline{Z}_{l}$

In terms of logical operations:

$$H = rac{m}{2} \sum_l (-1)^l (1 - \overline{Z}_{l-1}\overline{Z}_l) + rac{\epsilon}{2} \sum_l \left(1 - \overline{Z}_{l-1}\overline{Z}_{l+1}
ight) \overline{X}_l + 2\lambda_E \sum_l \left(1 - \overline{Z}_{l-1}\overline{Z}_{l+1}\right) \overline{X}_l + 2\lambda_E \sum_l \left(1$$

ato

rs
$$\psi = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \frac{1}{2}(1+Z)X$$

 $Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X$
 $P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = Z$

ors

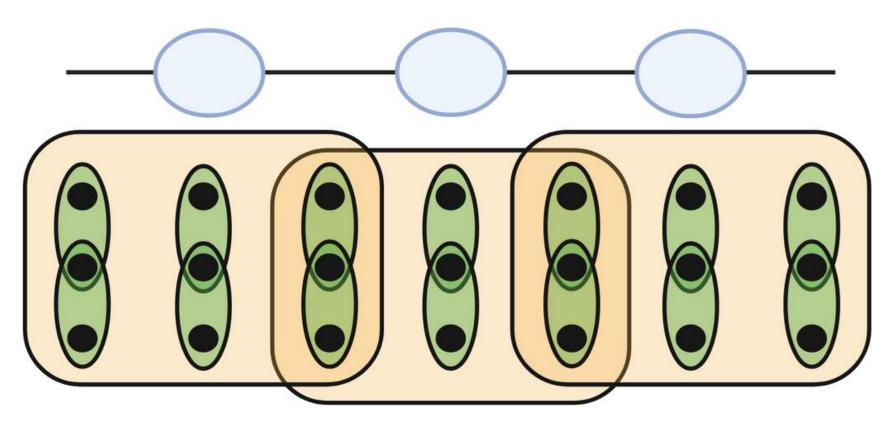
I operations:

 $ar{Z}_l = Z_{L_l}$

 $X_{S_l}X_{L_l}X_{S_{l+1}}$

 $ar{X}|0
angle_L=|1
angle_L$ $ar{X}|1
angle_L=|0
angle_L$ $ar{Z}|0
angle_L=|0
angle_L$ $ar{Z}|1
angle_L=-|1
angle_L$

FULL ENCODING



codewords

- $|0
 angle_L
 ightarrow |+++
 angle$
- $|1
 angle_L
 ightarrow |--angle$

- stabilizers
- $S_1 = X_1 X_2$
- $S_1 = X_2 X_3$

3 qubits per site 3 qubits per link

$$\ket{+} = rac{1}{\sqrt{2}} (\ket{0} + \ket{1}) \ \ket{-} = rac{1}{\sqrt{2}} (\ket{0} - \ket{1})$$

$$egin{array}{ll} X|+
angle = |+
angle \ X|-
angle = -|-
angle \end{array}$$

STABILIZER CODES

Let "P" be the n-qubits Pauli group A codword is a state such that, for every element of S

$$|S_i|x
angle = |x
angle$$

Define "S" the stabilizer group as an abelian subgroup of P

If we start with n physical qubits

we define n-k stabiliser operators

we will have a number of codewords equal to

$$2^n/2^{n-k}=2^k$$

So we will have k logical qubits

The element of S are traceless, with eigenvalues +1 or -1

By adding an element to S, we half the Hilbert space of codewords

Logical operators are elements of P that commute with S

They are 2k operators. Every operator commute with all other operators but one that has to anti commute