Quantum Sensing for Particle Physics

QT4HEP-2025: International Conference on Quantum Technology for High-Energy Physics

Steven Worm

Deutsches Elektronen-Synchrotron (DESY) / Humboldt-Universität zu Berlin January 22, 2025

Outline

- Introduction: the "What" and "Why" of quantum sensing for Particle Physics
- Selected quantum sensing techniques
 - Cryogenic detectors
 - Superconducting devices
 - Spin-based, NV-diamonds
 - Metamaterials, 0/1/2-D materials
 - Ionic / Atomic / Molecular systems
 - Optical atomic clocks
 - Atom Interferometers
 - Magnetometers
- How to get started in Quantum Sensing: DRD5 / RDquantum

What is Quantum Sensing?

- Quantum Sensing: any sensing device enabled by the ability to manipulate and read out quantum states
- Requirements for a quantum sensor
 - Discrete quantum states (e.g. energy levels $|0\rangle$, $|1\rangle$)
 - Possibility to reset and readout
 - Coherent state manipulation possible (usually)
 - Sensitivity—something measurably changing (e.g. frequency ω_0 or transition rate Γ)
- Note that entanglement/squeezing not required, but can make even better sensors
- Close parallel to DiVencenzo Criteria for Quantum Computing, minus gate requirements
- *Many possible systems:* atoms (neutral, ions, Rydberg states), cavities, atomic clocks, interferometers (photons, matter), superconducting circuits, optomechanical systems, quantum materials

Quantum Detectors, Quantum Experiments

Why quantum sensing?

- A1: Potentially better sensitivity or noise performance
- A2: Because we have to (e.g. for ultra-light dark matter)!

- Quantum Detectors: use quantum sensing to making extreme measurements possible
 - Enables (better) measurements, e.g. wavelengths
 - Extreme sensitivities (single-photon) or low noise

- Quantum Experiments: sensing is used for fundamental physics measurements
 - Gravity, Lorentz Invariance, physical constants (α, μ) , dipole moments), etc
 - Techniques such as interferometry, magnetometry, clock-based systems, optomechanical devices

Cryogenic Detectors

- Low energy and limits for ionisation
 - Limit for e/hole pairs in semiconductors is band gap energy (1.12 eV for Si)
 - Ionisation works above the band gap, below we detect the heat (phonons)
- Measuring small temperature differences
 - ΔT depends on energy and heat capacity ($C = c_p m$)
 - Heat capacity given by Debye equation, $C \propto (T/T_D)^3$, where $T_D = Debye$ Temp
 - Silicon example: $\Delta T \approx 1\%$ requires mass of 1 µg and T_0 = 0.1 K
- Example1: Hitomi satellite, SXS (JAXA, CSA)
 - 36 pixels (814 µm) HgTe absorber at 50 mK
 - Energy between 0.3 and 12 keV, resolution ~7 eV
- Example2: Lynx X-ray Microcalorimeter (NASA)
 - ~50k pixels (25-50 μm) Au absorber at 50 mK
 - Energy between 0.2 and 15 keV, resolution <3 eV

Transition Edge Sensors (TES)

- TES Operations: Measure ΔT with superconducting circuit
 - sharp transition between superconducting → conducting
 - small temperature change, large resistance change
 - Detection limited by thermal noise; readout resistance << sensor resistance
- Readout: Superconducting Quantum Interference Devices (SQUIDs)
 - Two Josephson junctions in parallel: low temperature (~0-5 K)
 - Plus: Low temp, very low noise, moderate amplification
 - Minus: limited input, feedback (flux) loop required to lock at operating point
- Example: BICEP3
 - Used to study Cosmic Microwave Background (B-modes)
 - Monolithic arrays of 2400 antenna-array coupled TES detectors
- Arrays used from radio to X-ray with high spectral resolution (SPT, ATHENA, BICEP) → now also particle physics (CDMS, ALPS...)

very marrow (* meander bia Absorption of ps timing resolu Provides high-ef counter for (WSi demonstra Very low dark c applicable for But very small

uantum Sensing for Particle Pl

DESY. Quantum Sensing | Steven Worm | 2

Non-destructive multiple read cycles to reduce electronics noise by VN

Provides similar single-eh pair sensitivity

Currently being applied for DM searches, low-light-level astronomy

Superconducting Nanowire Single Photon Detectors (SNSPDs)

Threshold detector for single photons

Very narrow (~100 nm) superconducting meander biased class to transition

Absorption of pho

ps timing resolutio

Provides high-efficiency, high-fidelity photomixels arranged in a 4

The detector studi cated on high resistiv was fully depleted at sor is 200 μ m thick an of the Skipper CCD

SNSPD: Advances & Expected Performance

^[1] Korzh, Zhao et al, *Nature Photonics* 14, 250 (2020)

^[2] Reddy et al, *Optica* 7, 1649 (2020)

^[3] Oripov, Rampini, Allmaras, Shaw, Nam, Korzh, and McCaughan, *Nature* 622, 730 (2023)

^[4] Craiciu, Korzh et al, *Optica* 10, 183 (2023)

^[5] Resta et al, *Nano Letters* (2023)

^[6] Chiles, PRL 128, 231802 (2022)

^[7] Taylor, Walter, Korzh et al, *Optica*, (2023)

Cryogenic Quantum Sensors

- Superconducting Tunnel Junctions (STJ)
 - Exploit quantum tunnelling in a junction of two superconductors
 - Direct tunnel current measurement (non-Heterodyne): simultaneous fast photon counting and spectroscopy in IR, Vis, UV bands
- Microwave Kinetic Inductance Detectors (MKIDs)
 - Exploits change in phase of an inductor capacitor (LC) oscillator in thin superconductor
 - Read-noise free, easier multiplexing: arrays of ~10k under test
- Superconductor-Insulator-Superconductor (SIS) receivers
 - Enabling technology for sub-mm Astronomy
 - Superconducting circuits allow phase coherent downconversion THz → GHz

Superconductor-Insulator-Superconductor (SIS) Mixer Block

Superconducting Tunnel Junction

MKID operating principle

Cryogenic Quantum Sensors vs. Wavelength

Detector	Microwave 3cm - 3mm 10-100 GHz 0.04-0.4 meV	Submillimeter 3mm - 300µm 100 GHz - 1 THz 0.4-4 meV	Far infrared 300 – 30 µm 1 – 10 THz 4-40 meV	Optical 2 μm - 300 nm 2-37 eV	High Energy UV, X-Ray
Transition Edge Sensors (TES)					
Kinetic Inductance Detectors (KID)					
Superconducting Nanowire Single-Photon Detector (SNSPD)					
Hot-Electron Bolometer (HEB)					
Cold-Electron Bolometer (CEB)					
Superconductor-Insulator-Superconductor (SIS)					
Travelling Wave Parametric Amplifier (TWPA)					
Josephson Junction Parametric Amplifiers (JJPA)					

Quantum Dots and Chromatic Calorimetry

- Quantum dots: nanometer-sized semiconductor structures, e.g. in carbon, perovskites, etc.
- Tuneable, with properties between single atoms and bulk material

- Seed different parts of a detector with nanodots emitting at different wavelengths
- Wavelength of fluorescence photon indicates specific nanodot position: shower profile from spectrometry

Quantum Dots: Active Scintillators & Tracking

- Quantum Dots, Quantum Wires, Quantum Wells... many structures possible
- Quantum Well-dots: aiming for active scintillators
 - electronic amplification / modulation
 - pulsed / primed operation
 - gain adapted in-situ
- Quantum Dots in CMOS pixels: DoTPiX
 - n-channel MOS transistor + buried quantum well gate
 - gate collects holes, modulates current
- Tracking with Quantum Dots: Scintillating (Chromatic) Tracking
 - GaAs bulk to generate e/h pairs, InAs quantum dots to trap charge
 - Dots emit photons from photoluminescence, collected by photodiode

Quantum-Polarized Helicity Detection in NV Centres

- Photoluminescent point defect in diamond nitrogen-vacancy centres (NV-)
 - Spin-dependent photoluminescence to measure electronic spin state
 - Relatively long (millisecond) spin coherence at room temperature

- Usually requires polarized beams and/or polarized targets
- Polarized scattering planes possible to measure track-by-track particle helicity

Quantum Sensing and Rydberg Atoms

- Rydberg atoms: highly excited valence electrons
- Rydberg readout of a Time Projection Chamber
 - Up-convert THz / GHz radiation → optical readout
 - Larger signal via Rydberg "priming" in amplification
 - Lower ionization threshold → higher electron yield
- Antiprotonic atoms and novel HCI systems
 - Anti-proton tests in Penning trap for Highly Charged Ions or molecules
 - Tests of QED, CPT, fundamental constants, fifth force, precision isotope shift (King plot), EDM measurements

highly charged, hollow antiprotonic or Rydberg atomic ions

Quantum-enabled Experiments & Ultra-light Dark Matter

Quantum Sensing needed for Light/Ultralight Dark Matter

Ultra-Light Dark Matter: Phenomenology

- Adding new DM interaction (field) to Standard Model Lagrangian
 - Bosonic: Ultra-light DM must be bosonic in nature
 - Non-relativistic ($\sim 10^{-3}c$): so it neither leaves the galaxy or clumps near the center
 - Oscillating classical field: coherent, practically monochromatic → wave-like

$$\phi(t) \approx \phi_0 \cos(m_\phi c^2 t/\hbar)$$

$$\mathcal{L}_{int} = \frac{4\pi\phi}{M_{pl}} \left(\frac{d_e}{4e^2} F_{\mu\nu} F^{\mu\nu} - d_{m_e} m_e \bar{e}e - \frac{d_g \beta_3}{2g_3} G_{\mu\nu}^A G^{A\mu\nu} - \sum_{i=u,d} (d_{m_i} + \gamma_{m_i} d_g) m_i \bar{\psi}_i \psi_i \right)$$

Coupling to Lagrangian is linear (in ϕ) for lowest order interaction w/ scalar field

$$\mathcal{L}_{DM} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu}F^{\mu\nu}}{4} - \frac{\phi}{\Lambda_{e}} m_{e} \bar{\psi} \psi$$

At the effective new physics energy scales Λ_{α} and Λ_{e} , α and m_{e} appear to oscillate

$$\frac{d\alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi}t)}{\Lambda_{\gamma}}, \quad \frac{dm_e}{m_e} \approx \frac{\phi_0 \cos(m_{\phi}t)}{\Lambda_e}$$

Quantum Sensing Methods for Testing $\Delta\alpha/\alpha$

Atomic spectroscopy (clocks)

$$\delta(v_1/v_2) \propto \cos(m_{\varphi}t)$$

$$\delta(v_1/v_2) \propto \cos(m_{\varphi}t)$$
 10⁻²³ eV < m_{φ} < 10⁻¹⁶ eV

Laser interferometry (cavities)

$$\delta \Phi \propto \delta(vL) \propto \cos(m_{\varphi}t)$$
 10⁻²⁰ eV < m_{φ} < 10⁻¹⁵ eV

$$10^{-20} \text{ eV} < m_{\varphi} < 10^{-15} \text{ eV}$$

Atom interferometry

$$\boldsymbol{F}(t) \propto \boldsymbol{p}_{\varphi} \sin(m_{\varphi}t)$$

Quantum Sensing Methods for Testing $\Delta\mu/\mu$

Co-magnetometry

$$B_{\text{ext}}$$
 $\delta(v_{L,1}/v_{L,2}) \propto \cos(m_a t)$
or $\hat{\boldsymbol{\sigma}} \cdot \boldsymbol{p}_a \sin(m_a t)$ $10^{-23} \text{ eV} < m_a < 10^{-17} \text{ eV}$

$$10^{-23} \text{ eV} < m_a < 10^{-17} \text{ eV}$$

Nuclear magnetic resonance ("sidebands")

(axion wind)

Nuclear magnetic resonance

Resonance: $2\mu B_{\rm ext} \approx m_a$

 $10^{-14} \text{ eV} < m_a < 10^{-7} \text{ eV}$

Quantum Sensing with Optical Atomic Clocks

feedback

- Optical Atomic Clock
 - Laser for oscillator, usually a narrow frequency around atomic transition
 - Ultra-stable laser locked to atomic transition, "counted" with frequency comb
- Atomic clock transition scale and sensitivity is "selectable"
 - For $R_{\infty} = \alpha^2 m_e c/4\pi\hbar$, fine structure const. α , and $\mu \equiv m_p/m_e$

 $\nu_{\rm hf} = A \cdot \mu \alpha^2 F_{\rm hf}(\alpha) \cdot R_{\infty}$ Hyperfine transitions:

 $\nu_{\rm opt} = B \cdot F_{\rm opt}(\alpha) \cdot R_{\infty}$ Optical transitions:

Vibrational transitions: $\nu_{\rm vib} = C \cdot \mu^{1/2} \cdot R_{\infty}$

- Calculate sensitivities to variations in α or μ given by K_{α} and K_{μ}
- Search for variation in α : ultra-light Dark Matter
 - Measure ratios of frequencies $(R = \nu_1/\nu_2)$ for two clocks, look for oscillations
 - Highly charged ions give excellent sensitivity
 - Th-229 nuclear clock → extreme sensitivity

Clocks proposed for QSNET

Clock	Κα	Κμ	
Yb ⁺ (467 nm)	-5.95	0	
Sr (698 nm)	0.06	0	
Cs (32.6 mm)	2.83	1	
CaF (17 μm)	0	0.5	
N_2^+ (2.31 μ m)	0	0.5	
Cf ¹⁵⁺ (618 nm)	47	0	
Cf ¹⁷⁺ (485 nm)	-43.5	0	

Quantum Sensing: Networks of Optical Clocks

- NPL-SYRTE-PTB demonstrated an optical clock network with dark fibres
- Comparing optical clocks with different sensitivities to variations of α
- Results for T = 0.9, 12, 45 hours
- Results for previously unconstrained parameter space (topological defect DM)

Quantum Sensing with Interferometry

- Superimpose waves to look for interference \rightarrow precise measure of (e.g.) distance
- Source is split and sent on two (or more) different paths, then recombined
- Interference (eg from changes in arm length) analysed by Fourier analysis, fringes, etc.

Long-Baseline Atom Interferometry

- Demonstrated at ~meter scale, proposing 100m and ultimately km (space)
 - AION: Atom Interferometer Observatory and Network
 - ELGAR: European Laboratory for Gravitation and Atom-interferometric Research
 - MIGA: Matter wave-laser based Interferometer Gravitation Antenna
 - MAGIS: Matter-wave Atomic Gradiometer Interferometric Sensor
 - ZAIGA: Zhaoshan Long-baseline Atom Interferometer Gravitation Antenna
 - AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space
- Matches lab infrastructure; underground shafts (CERN, Fermilab, etc)
- Ultralight DM, but also topological DM, gravitational waves, Lorentz invariance

MAGIS-100 experiment

AION experiment concept

Cavities: Axion Heterodyne Detection

- DarkSRF Collaboration aiming for tunable cavities
 - Figure of merit (F) proportional to square of DM mass (m_a) and cavity volume (V)

$$F \sim g_{ay}^2 m_a^2 B^4 V^2 T_{sys}^{-2} G^4 Q$$

- Resonant cavities possible down to µeV; below that, need huge volume
- Tunable superconducting RF cavity:
 - Frequency conversion: drive $\omega_0 \approx \text{GHz} \rightarrow \text{axion gives } \omega_1 \approx \omega_0 \pm m_a$
 - Corrugated cavity with two polarizations (and lengths)
 - Separate scales allows separate tuning of ω_0 and ω_1
- Scan over axion masses:
 - Change of cavity geometry modulates the frequency splitting $\omega_0 \omega_1$
 - Huge parameter space to explore, but technical (cryo) challenges

(a) Cartoon of cavity setup.

Quantum Sensing with Magnetometry: CASPEr

- Cosmic Axion Spin Precession Experiment (CASPEr)
 - Measure two interactions: electric dipole moment (EDM) and the gradient interaction with nuclear spin
 - Solid-state NMR of ²⁰⁷Pb in a polarized ferroelectric crystal
 - Axion-like DM exerts an oscillating torque
- Limits for neV DM masses vs EDM coupling g_d and gradient coupling g_{aNN} ; many ideas for improvements

Quantum Sensing Techniques for Dark Matter

RDquantum / DRD5: Get started with Quantum Sensing

Collaboration recently launched, preliminary WP structure now set

WP1 Exotic systems in traps & beams (HCl's, molecules, Rydberg systems, clocks, interferometery, ...)

WP4 Scaling up to macroscopic ensembles (spins; nano-structured materials; hybrid devices, opto-mechanical sensors,...)

WP2 Quantum materials (0-, I-, 2-D) (Engineering at the atomic scale)

WP5 Quantum techniques for sensing (back action evasion, squeezing, entanglement, Heisenberg limit)

Quantum superconducting systems (4K electronics; MMC's, TES, SNSPD, MKID's... integration challenges)

WP6

<u>Capability expansion</u> (cross-disciplinary exchanges; infrastructures; education)

• Focus on exploring new technologies, connecting to HEP needs, and community-building

1st Collaboration Meeting: 17-19 February @ CERN (https://indico.cern.ch/event/1503433/)

Contact

DESY. Deutsches Elektronen-Synchrotron

Steven Worm
Group Lead, Astroparticle Detectors
steven.worm@desy.de

www.desy.de