CHROMATIC CALORINETRY

Yacine Haddad ⁽¹⁾, Devanshi Arora⁽²⁾, Etiennette Auffray ⁽³⁾, Michael Doser ⁽³⁾, Matteo Salomoni (3,4), and Michele Weber (5)

⁽¹⁾ Northeastern University, ⁽²⁾ Shizuoka University, ⁽³⁾ CERN, European Organization for Nuclear Research, ⁽⁴⁾ University of Milano-Bicocca. ⁽⁵⁾ University of Bern

INTRODUCTION

Why Quantum Technology for High Energy Physics?

- The future Calorimetry:
 - Demanding requirements from HEP: radiation-hardness, improved dimensional readout for particle-flow algorithms
 - increased complexity in readout systems.

Increasingly ambitious physics goals necessitate innovative detector designs

electromagnetic energy and timing resolution, high-granularity with multi-Traditional technologies could address these needs, but with significantly

NEW FRONTIERS IN PARTICLE PHYSICS

M. Lucchini, INFN, "ECFA Detector R&D Roadmap Task Force 6: Calorimetry Community Meeting, 12.1.2023"

PROPOSAL F Groposal for DRD5: R&D on guantum sensors ENSING

Roadmap topics \longrightarrow Proposal themes \longrightarrow Proposal WP's

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	clocks & clock networks	superconduct- ing & spin- based sensors	kinetic detectors	atoms / ions / molecules & atom interferometry	opto- mechanical sensors	nano-engineered / low-dimensional / materials
WP1 Atomic, Nuclear and Molecular Systems in traps & beams	X			X	(X)	
WP2 Quantum Materials (0-, 1-, 2-D)		(X)	(X)		X	X
WP3 Quantum super- conducting devices		X				(X)
WP4 Scaled-up massive ensembles (spin-sensitive devices, hybrid devices, mechanical sensors)		X	(X)	X	(X)	X
WP5 Quantum Techniques for Sensing	X	X	X	X	X	
WP6 Capacity expansion	X	X	X	X	X	X

Proposal WP's

Yacine Haddad [yhaddad@cern.ch] | Chromatic Calorimetry

Roadmap topics

Proposal on R&D on quantum sensors: the DRD5/RDq proto-collaboration https://cds.cern.ch/record/2901426

QUANTUM DOTS

The invention of Quantum Dots received the Nobel Prize in Chemistry in 2023

- Quantum dots are Semiconductor nanocrystals with size-tunable emission
- Narrow bandwidth (~20 nm) allows precise segmentation.
- Potential to outperform traditional scintillators in timing and spectral resolution.

QUANTUM DOTS: TIMING & CHROMATIC TUNABILITY

Scintillation decay time spectra from CsPbBr3 nanocrystal deposited on glass

K. Decka et al., Scintillation Response Enhancement in Nanocrystalline Lead Halide Perovskite Thin Films on Scintillating Wafers. Nanomaterials 2022, 12, 14. https://doi.org/ 10.3390/nano12010014

- **Chromatic tunability:** allows to optimise for quantum efficiency of photo detectors
- Deposit on surface of high-Z material: thin layers of UV to visible light converter
- Embed in material two-species, nanodots and microcrystals embedded in polymer matrix **Quantum dots are also radiation hard !!**

R. Leon et al., Effects of proton irradiation on luminescence emission and carrier dynamics of self-assembled III-V quantum dots, https://ieeexplore.ieee.org/document/1134230

QUANTUM DOT BASED CHROMATIC CALORIMETRY (CCAL)

• THE IDEA: seed different parts of a crystal with nanodots emitting at different wavelengths, such that the wavelength of a stimulated fluorescence photon is uniquely assignable to a specific nanodot position

Main features (on top of classic calorimeter):

- Longitudinally segmented, each layer with a certain emission wavelength and absorption band
- single readout capable of providing spectral information
- Unidirectional spectral transparency.

The longitudinal segmentation can be as fine as the materials allow \rightarrow many layers with 20 nm QD narrow band emission!

Result: longitudinal tomography of the shower profile.

Doser M, et al. (2022) Quantum Systems for Enhanced High Energy Particle Physics Detectors. Front. Phys. 10:887738. doi: 10.3389/ fphy.2022.887738

HOW DOES A CCAL WORK?

• 1st layer: QDs absorb $\lambda \leq 650 \text{ nm}$ emit at 670 nm

01/20/2025

HOW DOES A CCAL WORK?

1st layer: QDs absorb $\lambda \leq 650$ nm emit at 670 nm •

2nd layer: QDs absorb $\lambda \leq 529$ nm emit at 530 nm, 670 nm passes through •

HOW DOES A CCAL WORK?

1st layer: QDs absorb $\lambda \leq 650$ nm emit at 670 nm •

- **2nd layer:** QDs absorb $\lambda \leq 529$ nm emit at 530 nm, 670 nm passes through

Wavelength

3rd **layer:** QDs absorb $\lambda \leq 410$ nm emit at 420 nm, 670 nm and 530 nm pass through

** If high-Z substrate transparent in 400-700nm \rightarrow no re-absorption of emitted light

HOW TO BUILD A CCAL: TWO POSSIBILITIES

incoming particle

Option 1: Directly embedding QDs in high-Z crystals

Key challenge: Balancing QD integration with material stability.

Yacine Haddad [yhaddad@cern.ch] | Chromatic Calorimetry

Option 2: Hybrid approach polymer layers doped with QDs interleaved with crystals.

HOW TO BUILD A CCAL: READOUT

Ideally we want to count photons to measure the energy deposited in the calorimeter module while measuring their wavelengths to reconstruct the **longitudinal segmentation** of the shower.

Few Possibilities:

Metalenses

 Compact, nanostructured optical devices for precise light focusing. Requires further development for scalability in HEP

Pixel-Based Spectral Reconstruction

 RGB-based photodetectors, requires advanced algorithms to reconstruct spectrum from RGB measurements

Bandpass Optical Filters with Photodetectors

- Photomultipliers (e.g SiPMs) coupled with bandpass optical filters
- Challenges: Angular acceptance and filter

R. Cheng, M. Khorasaninejad & F. Capasso, Science 358, 6367 (2017)

Y.T. Lin & G. Finlayson, Sensors 2023, 23(8), 4155

Yacine Haddad [yhaddad@cern.ch] | Chromatic Calorimetry

SIMULATION FOR PROOF OF PRINCIPLE

Geant4 used to simulate hybrid CCAL single module

- Four PbWO4 blocks (6cm each) ~ 25 X_0
- Interleaved 2 mm PMMA layers doped with QDs.
- SiPM detectors with bandpass filters at the rear tuned to the QD emission peaks

Simplified optical properties are assumed:

- Neglecting detailed sub**keV** interaction dynamics and surface effects
- Tuning the absption based on the QD concetration in **PMMA**
- Absorption and re-emission spectra are approximated based on literature

≥			0	X_0	λ_I	n^{\dagger}	λ_{max}	Li
lte	·	g/c	cm^3	cm	cm		nm	
r a	• PMMA	A 1.	19	34.07	69.54	1.49	*	
S	PbWO	4 8 .	30	0.89	20.7	2.20	425	20
P	Label	$\lambda_{ m max}^{ m QD}$	Fi	lter	PDE o	$\sigma_{\rm abs}(40)$)0nm)	$\ell_{\rm ab}$
ບ ລ		nm	r	nm		10^{-14}	cm^2	
nd	Red	630	630	± 30	25%	31.	69	
	Green	519	520	± 30	42%	14.	79	
lte	Blue	463	450	± 30	51%	6.9	94	
S	Purple	407	400	+30	47%	5.7	78	

SIMUJLATION RESULTS: ENERGY RESPONSE

Echo photons: Backward propagating photons can get re-absorbed and re-emitted in the wavelength of the previous layers

CHROMATIC CALORIMETRY: SIMULATION

Advantage: Chromatic segmentation provides additional spatial information (e.g., center of gravity of the shower).

Yacine Haddad [yhaddad@cern.ch] | Chromatic Calorimetry

Linear total energy response: weighted energy reconstruction achieves resolution comparable to current LHC-experiments benchmarks for single crystal modules

CHROMATIC CALORIMETRY: PARTICLE IDNETIFICATION

PROOF OF CONCEPT & BEAM TESTS (2024)

Materials: Standard inorganic and organic bulk scintillating materials with varying emission spectra were used. PbF₂ was selected as the dense light guide (25 X_0 and light propagation).

Yacine Haddad [yhaddad@cern.ch] | Chromatic Calorimetry

Readout: Dichroic filters were employed on the readout side to enable spectral separation.

Progress in Chromatic Calorimetry Concept: Improved Techniques for Energy Resolution and Particle Discrimination, D. Arora, M Salomoni, Y Haddad, V Zabloudil, M Doser, et .al arXiv:2501.08483

Yacine Haddad [yhaddad@cern.ch] | Chromatic Calorimetry

Progress in Chromatic Calorimetry Concept: Improved Techniques for Energy Resolution and Particle Discrimination, D. Arora, M Salomoni, Y Haddad, V Zabloudil, M Doser, et .al arXiv:2501.08483

CONCLUSION

- Quantum dots with narrow-band emission and tunable properties provide a novel approach to calorimetry
- enabling detailed shower profile and energy reconstruction.
- added advantages of depth segmentation.
- Proof of concept and beam tests at CERN: Early results show effective spectral reconstruction.
- measurements.

Yacine Haddad [yhaddad@cern.ch] | Chromatic Calorimetry

• Chromatic Calorimetry Achieves fine longitudinal tomography of particle showers,

 Proof-of-principle simulations using Geant4 demonstrate that CCAL achieves linear energy response and energy resolution comparable to benchmarks like CMS ECAL, with

separation, demonstrating potential for electron-pion discrimination and shower

• Next steps: Test QD-doped materials and absorptive filters; explore time-of-arrival and pulse-shape information for further optimization. Obtain Eres vs E, comparative

THANK YOU

Many thanks to Crystal Clear Collaboration (RD18), Quantum Technology Initiative at CERN, and the ECFA DRD5 collaboration for their support in this research

QUANTUM TECHNOLOGY INITIATIVE

QUANTUM CONFIMENENT AND QUANTUM DOTS

Quantum dots (QD) properties: Narrow-band emission (~20nm)

- Tunable emission
- Short rise/decay times
- Good light yield

NEXT STEPS

absorptive filters in the next design iteration. implement a full stack using these new materials for improved performance.

• Filter Optimization: Replace dichroic filters, which exhibit strong angular dependence, with

• Material Testing: Test quantum dot (QD) doped materials as a substitute for EJ-262, and

CHROMATIC CALORIMETRY: 2023 BEAM TEST

particle discrimination

Yacine Haddad [yhaddad@cern.ch] | Chromatic Calorimetry

Enhancing Energy Resolution and Particle Identification via Chromatic Calorimetry: A Concept Validation Study, D. Arora, M. Salomoni, Y. Haddad, et al, arXiv:2411.03685

