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High microwave resonator Period: 1994 -2002 Nb or Cu/Nb 1.5 Ghz single cell Phd thesis 1995
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emperature measurements including T=4.2
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Superconducting cavities
ring f=1,5GHz (CERN, INFN- LNL)

Progetto Finalizzato CERN-INFN

A, Cassinese INFN ELOISATRON PROJECT, 38" Workshop:
Superconducting Materials for High Energy Colliders, Erice, 1999



Best Sensitivity to Wavelike Dark Photon Dark Matter

with SRF Cavities

Raphael Cervantes', Caterina Braggio?2, Bianca Giaccone’, Daniil Frolov'!, Anna Grassellino!, Roni Harnik’,
Oleksandr Melnychuk!, Roman Pilipenko', Sam Posen', Alexander Romanenko!

Fermilab?, Universita di Padova?, INFN3

Searching for dark matter with Microwave
Cavities

Makes up 85% of all the matter in the Universe, but what is it? Is
it wavelike?
Axions and dark photons are two candidates that can convert to

photons.
Dark Photons
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Lots of unexplored parameter space.
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Microwave cavities can detect wavelike DM. Axions and dark
photons can enter the cavity and convert to photon. Cavity
resonantly enhances DM signal.

Need a magnetic field for detecting axions, but not for detecting
dark photons. Aenplty
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We can search deeper and faster with SRF cavities.
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New Exclusion Limit for Dark Photons from an SRF Cavity-Based Search (Dark SRF)
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Dark SRF test run:
macmin - 8.7 Hz

Time (scans) Signal Analyzer

FIG. 2. The Dark SRF emitter frequency collected over 6041
scans [each lasting about a second). The frequency variation
in this test spans 5.7 Hz. The emitter cavity was the less ) _
: i s v FIG. 1. Left: The experimental setup for the Dark SRF ex-
stable of the emitter-receiver pair.

periment consisting of two 1.3 GHz cavities. Right: A sketch
of the Dark SRF electronic system.

Minimum-to-maximum frequency variation in this run was 3Hz.
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OPERATION OF AN SRF CAVITY TUNER
SUBMERGED INTO LIQUID HELIUM"

Y. Pischalnikov’, D. Bice, A. Grassellino, T. Khabiboulline, O. Melnychuk, R. Pilipenko, S. Posen,
O. Pronichev, A. Romanenko, Fermi National Accelerator Laboratory, Batavia, IL, USA
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Ll;:vcl of the microphonics on the single cell 1.3 GHz
cavity, mstalled at FNAL VTS facility, was ~3 Hz (rms).
Main resonances were 1n the range of 20-50 Hz. Using pi-

ezo-tuner with active compensation could suppress micro-
phonics below rms = | Hz [5].



Coherent coupling between molecular spin ensembles and high
critical temperature superconducting coplanar resonators (> 2016)
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Strong coupling regime:

Bare resonator

« Q-factor > 10*at 2 K

« Wide temperature range (Tc=87 K)

« Stable in applied magnetic field upto 7 T (in-plane) and 1
(out-of-plane)
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Strong coupling with ensembles of organic radical spins
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We report the evolution of the transmission peak

-.*NvCH ) " . in correspondence to the resonance field of the
o v Cl = :%I 5 DPPH spin ensemble (Br=0.276 T). At 2 K, two
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‘ £ I presence of a large anticrossing between the
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Alford Group , Imperial college

After investigating a fullerene derivate, we stumbled upon a Optical pump
pentacene which had a huge EPR signal : Microwave cavity
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Possible Maser gain media - Picene & Pentacene ( PRIN submitted 2020 )
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Figure 2 A) PL spectra of pentacene in picene with different concentrations
Inset: molecular energy levels. B) Photo-EPR spectrum of a picene doped
pentacene single crystal. C) Angular dependence of the resonance line
intensities. Inset: sketch of the experimeantal geometry

Adsorption spectra of Picene and Picene doped Pentacene
increasing pentacene percentage. The presence of pentacene
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J. Phys. Chem. C, 2018,
122 (29), pp 16879-16886

A single resonance
was observed in dark On
crystal Picene/pentacene

g-value=2.002
FWHM =4 G

No orientation

change dramatically the PL spectra. The Picene bands vanish dependence
while new bands due to single pentacene emission appears.
EPR In dark ( F. Moro UNI Bicocca) Other materials considered
Picene+penatcene Crystals <1% Diamond with NV 2.1 Ghz
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Coupled Resonator Calorimeter for Particle Detection
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fitted by the above equations and that the rate of change of reso-
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Thus the sinele photon coupling streneth  becomes - . . g . Fig. 8 a) A 2s trace of events, including one alpha decay and two
gep ping 1 g 10 J/Hz @@ 10K 75 MHz/K. Since the output frequency of a microwave loop calibration pulses b) A histogram of S0 alpha decays and 400
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ar ar \ ¢ be stable to at least 1 in 10*! for an averaging time of 1 s [3].
the thermometer has a potential resolution of at least 1.5 nK,
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Fig. 6 Measured frequency shift of a coupled resonance at
14.87GHz. with best fit to equation (4). shown by the dashed line.

T is temperature
C, T, and T, are fitting parameters
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Fig. 2 COMSOL finite element model of the coupled resonator

Fig. 3 Schematic layout of the coupled resonator system.

system for SrTiOs permittivity 650, £ =11.426GHz with housing size
20 x 20 mm. a) Meshed geometry of the MCR system, b) Standing
wave pattern of this coupled mode.
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Applications of Coupled Dielectric Resonators Using
Sr'T'1045 Pucks: Tuneable Resonators and Novel
Thermometry

T~hy C. Gallop and Ling Hao
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Fig. 4. Tuning effect of applied voltage to STO.

In Fig. 4, we show the effect of a modest applied electric
field on the frequency of the loop oscillator. Note the total
tuning range achieved 1s around 0.015% (1.5 MHz) for an
applied voltage change of only 60 V. However, note also that
there 1s some indication, at 30 K. of hysteresis in the frequency
versus voltage plot.
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Using an approximate analytical forpa tor the tetperature de-
pendence of £,.(STO) = &' /1", (wherg &’ ~ 10°) whijch is valid
for the temperature range between abowt 20-80 K. w¢ can diftfer-
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Thus, 1t 1s important to operate with a mode overlap coupling
between the resonators which is as strong as possible, with the
loss tangent (tané) of the STO as low as possible (to mini-
mize Wgro) and the temperature 1" as low as possible. If all

of these parameters are optimized, this thesmremeter has a po-
tential temperature resolution of at lec omparable
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Microwave Measurements on Superconducting Nb-Doped SrTiO,

» Temperature dependence o,(T) for
certain frequencies Nb:SrTiO,

n=2.0x10*° cm™
T.~0.28 K

* Directly obtain values for
superconducting gap 2A(T7)

conductivity o,/c,

0.2
temperature (K)

University of Stuttgart Marc Scheffler 10




GHz Dielectrics of Undoped SrTiO; at mK Temperatures

+ Superconducting (Nb) coplanar
resonator on undoped SrTiO,
in distant flip-chip geometry

* Resonator operation around 1 GHz

« Substantial resonator Q at
temperatures below 1 K

« Surprisingly low losses

+ Temperature evolution of &;:

« Weak maximum around 3 K

« Even weaker minimum around
300 mK
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high-Q dielectric cavities
for axions
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IAXO =» solar axion search via X-rays
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"
= Axions are genérated inside the Sun under its strong magnetic field and photon field
= Axions flying to the Earth is converted to X-ray photons under magnetic field we apply

= Successor of Sumico (PIN photodiode Hamamatsu 53590-06-5PL) & CAST (CCD, micromegas)

= Baseline TPCs equipped with Micromegas = alternative: MMC
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Enhance the coherent microwave signal generated
on the dielectric surface for dark matter axions
Around 20 GHz microwaves

Prototyping with sapphire discs

4.2 K operation

Boost factor is not direct observable unlike Q-factor

of cavities = indirect calibration via simulation
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ABSTRACT

Dielectric spectroscopy of a SrTiO; single crystal over a broad range of microwave frequency using quasi TE,,,, and quasi TM,,; , modes

Fe rroelectric phase tra nSition a nd C rysta I reveals crystal asymmetry from typical measurement of Q-factor, transmission, or frequency characteristics in continuous cooling down to a

few Kelvin. The properties of the modes due to the crystal asymmetry are validated by implementing a quasiharmonic phonon approxima-

asym metry monitoring of SrTi03 using quai tion. The observed ferroelectric phase transition temperature is around 51 K, and quantum-mechanical stabilization of the paraelectric

phase arises below 5 K with very high permittivity. Also, an antiferrodistortive transition was indicated at 105 K. Landau’s theory of correla-

TEm,1,1 and quasi TMp, 11 modes

Cite as: J. Appl. Phys. 126, 104102 (2019); https://doi.org/10.1063/1.5092520

tion length supports the observation of an extra-loss term so the transition may be identified near the Q-factor maxima or transmission
maxima depending on the other loss terms present in the cavity. Thus, the ferroelectric phase transition with respect to temperature is iden-
tified when its extra-loss term causes a discontinuity or deviation in the derivative of the temperature characteristic near the minimum of
total cavity loss (maximum Q-factor or maximum transmission temperature characteristic). This temperature is confirmed by transmission
amplitude variation of quasi TEs; under 200 V dc electric field showing the existence of the soft-mode. These measurements support a

Submitted: 12 February 2019 . Accepted: 18 August 2019 . Published Online: 12 September 2019 typical polarization model and explicit temperature dependency of the soft-mode incorporating an imaginary frequency.

M. A. Hosain "/, J.-M. Le Floch ", J. F. Bourhill, J. Krupka, and M. E. Tobar I

Published under license by AIP Publishing. hitps://dolLorg/10.1063/1.5092520
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FIG. 2. Frequency shift characteristics of a bunch of dielectric resonance
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Current activities in collaboration with M. Tobar’s group concening
SrtiO3 and diamond with NV:

1) High Q resonators based on supermodes configurations
2) Room temperature Arhanov Bohm effects

3) Doped SrtiO3 Puck measured at milliKenvin

Supermode Sapphire T=300 K
Courtesy M. Tobar et al
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FIG. 1: Proof of concept experimental set up to observe

the behaviour of “super modes p spacing is varied

between two identical sapphire whispering gallery mode
resonators.

Experiment:
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‘We constructed a cavity with 2 similar small crystals one was z=10.55mm the other z=10.63mm, one
crystal was affixed to the floor of the cavity, the second was suspended from an adjustable plunger
measured in inches in the ceiling of the cavity. A network analyzer was used to determine the
resonant frequencies of the two crystals.



Tesla cavity and dielectric puck modes

* The goal is to couple the TE mode of the dielectric puck with the TMy;, mode of the

Tesla-shaped accelerating cavity

Shahnam Gorgi Zadeh . et al,
CERN

fou = 1299.977 MHz

Tesla cavity: 0 a8
cu —

quck == 1.0164’

Dielectric puck:

https://arxiv.org/abs/2410.05831

..................
..................

.............

B A B T T N

L [mm)] 57.692
Req [mm] 102.4496
Lyp [mm] 150
feu [MHZ] 1299.977

Qcu 28885

fpec [MHZ] 1300.000

Req optimized to tune f to 1.3 GHz
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Courtesy Walter Venturini CERN

Preliminary measurements of Frequency variations at 1.85 K (VNA) vs time performed by Lorena Ve
(2023) (non optimized)
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Tests performed connecting 1.3 GHz cavity to VNA:

* Fixed temperature: Helium vapor pressure = 20 mbar (with pressure controller).
 Power: 10 dBm



S-parameter (dB)

Dielectric resonators
Shahnam Gorgi Zadeh, et al, https://arxiv.org/abs/2410.05831

* Test of SrtiO3 dielectric resonators CERN

(d) (M -20—
13.150 ) 'ég'
Fundamental mode TEo15 020; < 80} simuiaton
& 13145 o (% o -100
C 2 2 -120;
=~ -0.25- = = 20,
& 13140 8 g ~ 40
3 N T 8w
-0.30+ it ] ~  -80- experiment
3.135 & -100
-90 : o 120, TV,
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3 1 8 1 E '04 1 . 2 3 Frequency (GHz) Frequency (GHz) Frequency (GHz)

FIG. 1. Characterization of the STO resonator at room temperature. (a) Photograph showing the STO puck and Cu
cavity used in the experiments. (b) Sketch of the model used for simulations (COMSOL Multiphysics). The top cap
is not shown. (c,d) Simulated distribution of the root-mean-square electric and magnetic field for the TE016
mode (er = 318). (d,e) Plots of reflection (5S11) and transmission spectra (S21) measured at room temperature
(incident power 0 dBm). The amplitude is shown in blue, the phase in green. (f) Comparison between simulated
and experimental S21 spectra. The peak at 1.22 GHz is reproduced by the simulated TE016 mode, while the dip
displayed by the simulation at = 1 GHz is below the background transmission of the cavity (-100 dB). The peak at
1.8 GHz is probably related to the hybrid HEM128 mode, although in this case the simulation shows a mismatch
of = 200 MHz.



https://arxiv.org/abs/2410.05831

STO Cu Cavity - Temperature Comparison

S Parameter

Temperature Dielectric Resonant
Crystal Frequency

298,15K  Closed STO 1.207 GHz 7295 -18.35 dB 521
25°C) Cavity
77K cleese STO 478.64 MHz 16348  -20.64 dB s21

(-196 °C) Cavity
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Dielectric resonators SrTi0O3
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Rutile TiO2

The permittivity of TiO2 may be fitted over the whole temperature range by the

the same relation for perovskite-type crystals:

C . ;
E= AO + - 0 Where: .,,%

T1 * Tis temperature £
9 Ty coth (ﬁ) —To * A, C, T, and T, are fitting parameters
Unit cell of TiO,.

Structure data from COD-database with COD-code 1534781. (Figure: Mario Mékinen.)

Samara & Peercy .
240 = TiO,-N, 7
e TiO,-FG .
T-Room Al Cavity
220 .
W
200 .
il | Dimensions similar to SrtiO3 Puck
Temperat Copper Dielectric Resonant S
ure (e1Y/14Y] Crystal Frequenc Paramete
160 | . . r

0 50 100 150 200 250 300

Temperature (K) 29285’% K (é':::: Ti02 2150GHz 21490  -21.08 dB s21
77 K Closed . S21
L5 v TiO2 1.925GHz 92949  -16.39dB

Temperature dependence of the permittivity (€) of TiO,

On the permittivity of titanium dioxide — J. Bonkerud (2021)
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P> Measurement TiO2 at T=0.82K

courtesy Photec Company
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Eigenmode analysis Cu Cavities

* The dielectric material is positioned within the cavity to explore the principle of coupling between the two fundamental
modes of the resonators = at around &, = 230 strong mode mixing happens

* Tesla mode is identified by its higher R/Q

g = 230
120 V/m
100 : : 3e+07
1400‘\ o N ]“cmdizl%gm - B
% [+RoverQ Model] . = . Z
1300»—.__“\\' * & & * 20 ‘ ~ R/Q = 60.6 Q
1250 '\\‘ «~Mode 1 0 220 240 260 i 280 300 320 340 Later 7
puck er
1200 '\\ +Mode 2 o000 .
150 m L ok .............. e
50 mm radial shift o o N/ I \oged. 3 850406
1100 : =
1050 1 | | 14000 Q = 1.510e4 1.56+06
200 220 240 260 280 300 320 340 L { _
000 220 240 260 280 300 320 340 R/Q =554 0 ]
plle_eI' puck_er 0
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Terminologies
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Eigenmode analysis in PEC cavity

* The entire surface of the cavity is changed to PEC and the frequency, quality factor and R/Q of the first two modes
are calculated

1302,
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dB

Frequency domain analysis Cu cavities

 Two antennas are positioned on opposite sides of the cavity to examine the transmission between them

* The technical aspects, including the optimal positioning of the dielectric within the cavity, how to secure it, and the suitable
excitation scheme, are yet to be explored.
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deg

Parameter sweep in g,
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* Phase derivative has high peaks at mode 1, mode 2 and
notch frequencies

* Phase derivative amplitude is larger for modes with larger
quality factor

* Phase derivative amplitude for the notch seems to have
constant amplitude

27



Numerical formula:

Frequency sensitivity )
flGHz] = — +3.45

34 (
Black curve data are taken al[mml]y/e, \d

from analytlc formula (accurate at 2% for 0.5 < af/d < 2 and 30 < ¢, < 50)

3.0 g
1340
1320 2.5
1300 === mm e m e m e S S W ———
x20 —e— Mode 1
Derivative = e
120 = —o— Mode 2
= w15
= 1960 \/:l\ 0 —8— Notch
. ‘%]—a —8— Dielectric puck alone
1240 1.0
—8— Mode 2 0.5
12001 —@— Notch
—8— Puck, analytic formula 0.0
1180 ' 220 230 240 250 260
220 230 240 250 260

Er
IVIOOe 1 ana Ivioge Z sensitivities to cnanges In €r are lower than those of the dielectric puck alone. The notch sensitivity is very similar to that of the dielectric

puck alone. In all cases, no amplification is observed, as the sensitivities cannot exceed those of the dielectric puck alone!!
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The entire surface of the cavity is changed to PEC and the frequency, quality factor and R/Q of the first two modes

U
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FIG. 5. Parameter sweep of the dielectric constant (2,) of
STO and its effect on the frequency and quality factor of the
first two modes of the coupled elliptical cavity and STO puck
at different radial offset (r,ge.) values. Mode 1 is the mode
with the lower frequency. (a) Frequency of the eigenmodes,
(b) quality factor of the eigenmodes, and (¢) E-field distribu-
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- — —— =23
1.2% | 7 —a— = =210
o 1D
— & =032
=100 | o
ja
2 ||
075 | 210
4
0wy S “H
4T/ —— =2 |
0.25 |{# — =23l |
—.— 5,=232 g
{10 e ==
1 Lk 20 50 4 G0 rl e I 30 40 50
Fulent |T2M) Feltest [T10ITI]

{a) (b}

FI1G. 6. Dependency of the frequency sensitivity (a) and qual-
ity factor (b) of the elliptical cavity-dominant mode with re-
spect 1o rofser at different values of 2,



—bin
=8
=100

10

—144

— PEC
— 16(H m—FE

_— PR,

—18050p 1995 1950 1975 1300 1325 130

2
22
eRlh)

F [MHz]
(a)
M
W
g
FU
= 50
= o0 ]
ot — PEC
: — PEC
—150f = PEC: =
1200 1350

— 2000k |

512 phase derivative [degree/MHz]

1350

FIG. 7. S-parameters of the excitation scheme shown in Fig.
at different £, and rofeer = 50 mm for a PEC cavity. (a) Mag-
nitude of 51 2. (b) Phase () of 51 5. and (¢) Phase derivative
{dyz/df) of 812 Varying = shilts the resonance [frequencies
of the two peaks and the notch., The phase derivative is linked
to the quality factor, with higher amplitude [or the mode with
the larger Q-lactor, and shows minimal change at the notch
A% £y vAries.

Slende 2 .
s A 9
1300H | = o Ml 2
= — —— PEC
= b 3 F - Copper ity
4 - "-ll\. e - J
i—_ll'_a[l' - .I-,I. Natch :I_ ——  [Helectric pock alome
¥R B . "‘":Tl
—= PE -'. = Mode |
&~ Coppser cavity b . —
I20H @ Puk. analytic fomsla g .y
23 230 210 250 200 ST 730 20 250 200
la) (b}
% o) o Notdl - .o
o, ol = : ""."-—--..-,_-_-_
i
£ 2500 T e Yoo e t:**"‘#'t“*'
L oo . . J |
< w-- Maodel < = . ~#- Notch
-El: TANH E ,l"" “-.- -8 Muode2
=" = - === Model
” . 1000{ & ‘\“
T 2K = bl .
A "-‘_'_
':: PEC Cavity _ :—‘. | Copper Cavity .
05y 230 210 250 200 4

230 2350 20 250 260

) (d)

FIG. 8 Analysis of the S-parameters shown in Fig. E (a) Frequencies of the first and second peaks, as well as the notch, of
the |512] curves shown in Fig. [Ja). (b} Derivative of the curves from (a). (¢) and (d) show the curves in (b) multiplied by the
phase derivative at [ = [, ([rom Fig. m[]j for a PEC cavity and a copper cavity, respectively. Mode 1 and Mode 2 correspond
to the frequencies of the first and second peaks of the |5y 2| curves, respectively, and the notch corresponds to the requency of
the dip betwesn these two peaks. The frequency of the puck alone and its derivative calealated by the semi-analytic [ormula

is also shown in (a) and (b). The product of frequency sensitivity and the maximum phase derivative iz alimost equal at the
notch for both the PEC and copper cavities (red curves in (¢] and (d)). However, for modes 1 and 2, it is smaller in the copper
cavity compared to the PEC cavity near £¢ of 230, where the coupling is at its maximum.



or
—Meas. Caviy
Meas. Cavity + Ceramic rod
20 - =—Meas. Cavity + Ceramic rod + STO puck
Sim. Cavity + Ceramic rod « STO puck

812 [dB]
g2 &

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
f [GHz]

[ln)

20 '\' |
) /,M By

—=Meas. Cavity
Meas. Cavity + Ceramic rod

—=Meas. Cavity » Ceramic rod + STO puck
Sim. Cavity + Ceramic rod + STO puck

ISs.2 [dB]
g 8

1 1.5 25 3

2
f [GHz]
{c)
FIG. 9. The measurement setup (a) and measurement results of the coupled elliptical
cavity with the STO puck over a narrow frequency range (b) and a wide frequency
range(c). The STO puck is fixed to the flange via a long ceramicrod at roffset=19 mm.
Two long antennas were used for the S2,1 measurement: one at the flange center
and the other at roffset=-19 mm. Note that the elliptical cavity used for the
measurements had a slightly different shape than the one used for the simulations,

causing a small change of the resonance modes of the cavity. An er of 300 is
assumed in the simulation.

Anyway, if we trust Gallop‘s numbers
pe = ZEAT = 7x10%AT
£ = ﬁ =

100 keV X-ray: AT = ~0.1 uK — Ae = 7x107*
1 eV IR photon: AT~0.1 pK — Ae = 7x1071°
1.3 GHz RF photon: AT = 5.5x10718 K —» Ae = 3.9x10~ 4

€ = Af by Shahnam

PEC 10 mm
— N
21349 P 1277/ 4
—— [ri] 1838 + 1587
1320 2l -2.377 1+ 0.06753
1300, L. "te.... . : daf
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1280} 1 de
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[
f(eoT)
df d'E -] 3 10
Af[Hz] = —=——AT = =2.377x10°X7x10°AT = 1.7x10'° AT [K]

100 keV X-ray: AT = ~0.1 uK = Af = 1.7 kHz
1 eV IR photon: AT~0.1 pK - Af = 1.7 mHz
1.3 GHz RF photon: AT = 5.5x1071® K - Af~1 nHz

The stabilized RF cavities can resolve probably 10 Hz

2 dE,;,, = 590 eV

-> This is a typical energy of soft X-ray (challenging!)

-> Realistic goal of this technology is soft X-ray counting



Conclusions

- We have studied the hybrid system composed by a high-Q TESLA-shaped elliptical cavity and STO resonator, and investigated the
effect of parameters, such as STO permittivity, puck dimensions and position within the cavity, that govern the coupling between
the electromagnetic modes.

-Finite-element simulations show that the hybrid system offers great versatility to tune the coupling strength and achieve the
strong coupling regime.

-These results are supported by test measurements carried out at room temperature using a copper cavity and a STO puck, and by
the low temperature characterization of the STO resonator, which shows resonant frequency of 0.1 GHz and Q-factor of 10000
and er =30000 at0.16 K.

-The hybrid system show potential for the realization of microwave sensors in which the sensitivity of the STO puck to selected
physical quantities is exploited as the active element, while frequency or phase measurements on the high-Q cavity are used to
efficiently detect such changes.

-In particular, the application of the hybrid system in bolometers exploiting the temperature dependence of the STO permittivity
has been discussed.

-Our results are useful to design dedicated experiments at low temperature allowing the direct test of sensitivity and tunability of
the proposed hybrid system in high precision frequency-domain measurements.
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