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Optical Quantum Sensor (0QS) a

o Based on lasers (pumping and probing) and
] Manipulate one
alkali-metal (Cs, Rb, K) vapor cells valence electron

o Manipulate electron spins for magnetic sensing

Typical implementation of OQS:
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Optical Quantum Sensor (0QS)
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Optical Quantum Sensor (0QS)

Spin tilt:
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Optical Quantum Sensor (0QS)
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0QS Noise Limit a

Fundamental quantum noise limit: y = gyromagnetic ratio of alkali-metal atoms
n = density of alkali-metal atoms
4 R OD 8 . Y
5 V = active measurement vapor cell volume
Y\" nV RprODTz n T, = coherence time of electron spins
Spin n0|se / n = photodiode quantum efficiency in probe beam
] ] Photon readout
Light shift noise (Lot noise

R, = absorption rate of probe beam photons
OD = optical depth of the probe beam

Fundamental quantum limit  in the cell volume of 200 cm® at > kHz

Current best OQS sensitivity 240 aT/Hz' at 423 kHz in the cell volume of 96 cm?
Romalis, Sauer, Savukov, Seltzer, Lee, U.S. Patent# 7521928B2 (2007)
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Application: Ultralight Axion Dark Matter Search

Axion frequency (Hz)
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LANL Axion Search: Target Signal a

Axion dark matter is “wave-like”: an oscillating field at a frequency
of the axion mass (m,) that permeates all of space

a(t) = a,cos(m t)
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LANL Axion Search: Target Signal a

Axion dark matter is “wave-like”: an oscillating field that permeates
all of space and interacts with the electromagnetic field

EO applied magnetic field
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LANL Axion Search: Target Signal (10

Axion dark matter is “wave-like”: an oscillating field that permeates
all of space and interacts with the electromagnetic field
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LANL Axion Search: Target Signal <

Axion dark matter is “wave-like”: an oscillating field that permeates
all of space and interacts with the electromagnetic field

EO applied magnetic field
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LANL Axion Search: Target Signal a

Axion dark matter is “wave-like”: an oscillating field that permeates

all of space and interacts with the electromagnetic field
EO applied magnetic field
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axion-induced oscillating magnetic field
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LANL Axion Search: Target Signal

Axion dark matter is “wave-like”: an oscillating field that permeates

all of space and interacts with the electromagnetic field
EO applied magnetic field
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axion-induced oscillating magnetic field
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LANL Axion Search: Target Signal (14

Axion dark matter is “wave-like”: an oscillating field that permeates

all of space and interacts with the electromagnetic field
EO applied magnetic field
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LANL Experiment Layout a

Iﬂput .
Sradiom gy, UANL 27 Low temperature resonant
magnet LC circuit + quantum
(cutaway view) limited (10 aT/Hz'?) OQS
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Optical quantum
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Publication

PHYSICAL REVIEW D 108, 052007 (2023)

Sensitivity of ultralight axion dark matter search
with optical quantum sensors

Young Jin Kim®, Leanne Duffy®,” Igor Savukov®," and Ping-Han Chu¢
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA

® (Received 10 April 2023; accepted 14 August 2023; published 12 September 2023)

An optical quantum sensor (OQS) based on lasers and alkali-metal atoms is a sensitive ambient-
temperature magnetometer that can be used in axion dark matter search with an inductor-capacitor (LC)
circuit at kHz and MHz frequencies. We have previously investigated the sensitivity of an LC circuit-OQS
axion detector to ultralight axion dark matter that could be achieved using a fT-noise OQS constructed in
our lab. In this paper, we investigate the sensitivity that could be potentially reached by an OQS performing
close to the fundamental quantum noise levels of 10 aT/y/Hz. To take advantage of the quantum-limited
0QS, the LC circuit has to be made of a superconductor and cooled to low temperature of a few K. After
considering the intrinsic noise of the advanced axion detector and characterizing possible background
noises, we estimate that such an experiment could probe benchmark QCD axion models in an unexplored
mass range near 10 neV. Reaching such a high sensitivity is a difficult task, so we have conducted some
preliminary experiments with a large-bore magnet and a prototype axion detector consisting of a room-
temperature LC circuit and a commercial OQS unit. This paper describes the prototype experiment and its
projected sensitivity to axions in detail.

¢:§ Los Alamos

NATIONAL LABORATORY



Intrinsic Noise of Optimized Axion Detector

Intrinsic noise of LANL LC circuit-
OQS axion detector:

At MHz target frequency (i.e., neV
mass range), axion detector
sensitivity is determined by
optical quantum sensor noise
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0QS noise limit OQS noise reduction =
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Projected Sensitivity of LANL Axion Search a

Axion frequency (Hz)
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o Unprecedented sensitivity 7 orders of magnitude beyond the current limit

o Will probe a completely unexplored axion mass range near 10 neV
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Spin Squeezing Method
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Spin Squeezing Method

Probe pulsing for spin squeezing:
* The first pulse squeezes spins
* Subsequent pulses readout spin states when the uncertainty is minimal

Probe
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OQS Setup
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Built an OQS module based on a potassium vapor cell and stable lasers with
measured OQS field noise at 105 T level
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Spin Noise Measurement a
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‘Spin Squeezing with Acousto-optic Modulator (AOM)
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We added an AOM between the probe beam and the vapor cell
for probe pulsing.
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Protocol for Spin Squeezing

Preparation stage Measurement stage
] i
[ | I I
Probe Delay time
pulsing g
Spin noise
A F = > > e i g gl A

<
With each probe pulse,
the spin state is Equilibrium is reached
squeezed a little

* During the delay time, the spin state is un-squeezed.
* Spin noise in measurement state depends on the delay time.
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PreliminarLSpin Squeezing Verification

OQS spin noise (a.u.)
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Time delay (ms)

Spin noise increases
at longer delay time
(preliminary
Verification of spin
squeezing effect!)

Data fluctuation due
to ambient magnetic
noise



Research Team ( 26

Key investigators at Los Alamos National Laboratory:

Young Jin Kim Leanne Duffy Igor Savukov
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Axion search using OQS recently selected for a QuantISED 2.0 .
award (Quantum Information Science Enabled Discoveries in  ENZRGY | office of science
High Energy Physics)!

Thank you!
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