Higgs Combination

The 3 analyses

Z(II)H(XX): neural to categorize in H flavour decay modes; fit on recoil distribution **Z(vv)H(XX):** neural to categorize in H flavour decay modes; 2D fit on visible and missing mass **Z(qq)H(qq):** multi-jet environment – categorization in flavours, 2D fit on recoil and dijet system

Final state	Z(II)H(jj) [%]	Z(vv)H(jj) [%]	Z(jj)H(jj) [%]	Comb. [%]	Previous results from Annecy, using 7.2 /ab Combination = quadrature sum	
$H \rightarrow bb$	0.68	0.3	0.25	0.18		
$H \rightarrow cc$	4.11	2.17	2.92	1.60		
$H \rightarrow gg$	2.28	0.92	2.00	0.78		
$H \rightarrow ss$	342	114	363	103		

What we need for the mid-term

We fit directly $\sigma(ZH)^*BR(H\rightarrow jj)$ (assume Z branching ratios perfectly measured)

The minimal deliverables for the mid-term report are:

- Combination of the 3 analyses at 240
- Combination of the 3 analyses at 365

Knowing ZH couplings, we can directly fit the BR and/or kappa's

- Combination of 240+365 GeV
- In first stage, combine assuming "absolute" ZH coupling known from Z(II)H
- Afterwards, we can attempt for a simultaneously with the Z(II)H analysis to extract the kappas:
 - At 240 GeV: *σ*(ZH) ~ 0.7%, at 365 GeV: *σ*(ZH) ~ 1.1%
 - Need to take into account possible correlations (some discussion needed)

It seems important to monitor the improvements due to better algorithms

- CDR (and MTR) precisions based on 2018 ILC efficiencies see table below
 - Let's see where we can do better and update the table accordingly

Table 1. From Ref. [4]: Relative uncertainty (in %) on $\sigma_{\text{ZH}} \times \mathcal{B}(\text{H} \to X\overline{X})$ and $\sigma_{\nu_e \bar{\nu}_e \text{H}} \times \mathcal{B}(\text{H} \to X\overline{X})$, as expected from the FCC-ee data at 240 and 365 GeV.

\sqrt{s}	240	GeV	$365{ m GeV}$	
Integrated luminosity	5 a	b^{-1}	1.5	ab^{-1}
Channel	ZH	$\nu_{\mathrm{e}} \bar{\nu}_{\mathrm{e}}$ H	ZH	$\nu_{\rm e}\bar{\nu}_{\rm e}~{\rm H}$
${\rm H} \rightarrow {\rm any}$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar{c}$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$\rm H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H \rightarrow \tau^+ \tau^-$	± 0.9		± 1.8	± 8
${ m H} ightarrow \gamma \gamma$	± 9.0		± 18	± 22
$H \rightarrow \mu^+ \mu^-$	± 19		± 40	
$\mathrm{H} \rightarrow \mathrm{invisible}$	< 0.3		< 0.6	

More lumi

Table 3. From Ref. [4]: Relative uncertainty (in %) on $\sigma_{\text{ZH}} \times \mathcal{B}(\text{H} \to X\overline{X})$ and $\sigma_{\nu_e \bar{\nu}_e \text{H}} \times \mathcal{B}(\text{H} \to X\overline{X})$, as expected from the FCC-ee data at 240 and 365 GeV.

\sqrt{s}	$240{ m GeV}$		$365{ m GeV}$	
Integrated luminosity	$10.8 {\rm ab}^{-1}$		$3.0\mathrm{ab}^{-1}$	
Channel	ZH	$ u_{\mathrm{e}} \bar{\nu}_{\mathrm{e}} \mathrm{H}$	ZH	$ u_{ m e} ar{ u}_{ m e} { m H}$
${\rm H} \rightarrow {\rm any}$	± 0.36		± 0.6	
${ m H} ightarrow { m b} {ar b}$	± 0.20	± 2.1	± 0.35	± 0.6
$H \to c \bar c$	± 1.5	?	± 4.4	± 7.1
$\mathrm{H} \to \mathrm{gg}$	± 1.3	?	± 2.5	± 3.2
$\rm H \rightarrow W^+W^-$	± 0.8	?	± 1.8	± 2.1
$\mathrm{H} \to \mathrm{ZZ}$	± 3.0	?	± 8.5	± 7.1
$H \rightarrow \tau^+ \tau^-$	± 0.6	?	± 1.3	± 5.7
$H \rightarrow \gamma \gamma$	± 6.1	?	± 13	± 16
$\mathbf{H} \to \mathbf{Z} \gamma$??	??	??	??
$H \rightarrow \mu^+ \mu^-$	± 13	?	± 28	
$\mathrm{H} \rightarrow \mathrm{invisible}$	< 0.2	?	< 0.4	

Chap. 1.3:

https://link.springer.com/content/pdf/10.1140/epjst/e2019-900045-4.pdf

Combination strategy

Definition of signal processes:

- POIs and names
- $H \rightarrow$ (tautau, WW, ZZ) as auxiliary POIs

Definition of backgrounds

- Procs: WW, ZZ, Zgamma, rares?
- Constrained or unconstrained

Separation of Z(vv) and vvH

- Necessary for 365 GeV, but also at 240 (for the width measurement)
- Split on missing mass at RECO/GEN level

Fitting tools

All the fitting tools basically provide an implementation of the Poisson likelihood fit

- Combine (RooFit based)
- CombineTF (Tensorflow based)
- Custom RooFit

- \rightarrow Combine and CombineTF are identical for binned fits
- \rightarrow CombineTF does not support unbinned/analytic fits
- \rightarrow Analytic fits should be identical to binned fits

Binning strategy

Need to synchronize on the binning strategy:

- Important, especially for sensitivity of the rare process $H \rightarrow ss$
- Extensive studies done with the hadronic analysis

Converged on:

- Start from uniform 1 GeV bins in recoil/mjj/etc. templates
- Rebin such that
 - At least one expected event in each bin (i.e. both signal and backgrounds)
 - Put 1e-4 event content in empty bins

MC statistical uncertainties

Monte Carlo statistical uncertainties important to consider

Combine and CombineTF have the Barlow-Beeston light algo implemented

- Used in all CMS analyses
- Effectively assigns an equivalent stat. uncertainty of all processes combined -
- Should include the signal processes as well -

Usage:

- Combine: in the cards using: * autoMCStats 0 1
- **CombineTF: arumgent line:** --binByBinStat -

Obviously, need to enable TH1::Sumw2()

Systematic uncertainties

Currently only uncertainties on the background (normalization)

Repository/versioning/lumi

Will make a repository so we can track the versionings of the cards

Need to converge on the lumis (final numbers to be used)