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Canonical inflation

V(9)

The most minimal model of inflation. -9

] | |
Action: § = 5 Jd4x\/jg _M%R — (dﬂgb)2 — 2V(gb)_ . /.

Background: ds? = — df* + a?(¢) dx? = a*(r)(—dz? + dx?).

Equation of motion: reheating Dend OcMB

: 1 1 .
Friedmann equation: H = and H? = —p*+V .
q 30 (245 (cb))




SR approximation:
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Performing SR approximation, the equations of motion become
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quasi-dS), with domain of conformal time 7 < 0.

Slow-roll inflation



Slow-roll inflation

é H
More systematically, define n-th SR parameter: ¢, | = " and ¢ = .
e, H H?

n

Substituting equation of motions:

7 i

p— , € =2€ +2—,
oMRH? ' T TGl

€1

SR approximation: |¢, | < 1.

SR approximation implies quasi-dS, however converse statement is not true.



Power spectrum

H*(z)

87T2MI%€1 (T)

A SZ(PBH) ........................................... A?( k) =
=—1/k

dlog A?
n(k)—1= ~ O(e)
dlogk

Decrease €(7) at late time to amplify the power spectrum on small scales. How to achieve that?



Violation of SR approximation

SR approximation: 3H¢ A dep ~ 0 USR condition: ¢ + 3Hp =0 — ¢ x a™>

: 5 M2 v 2 .’f ¢2 ’ |
, €] = xa <K
? N — ( ¢> < 1 i ' 2MZH?
¢ ‘. €, = 2€, + 2—,¢ ~ — 6 _’
€, =2¢ +2— < 1 ¢oH
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Potential of the inflaton

Qbend Qb(te) Qb(t) ¢CMB
SR USR



Evolution of the second SR parameter

« Sharp: step functionat botht =7,and7 =7, . €,

« Smooth: continuous function at 7 > 7.

— sharp

- SINOO0th



Cosmological perturbations

Small perturbations:

« Inflaton: (X, 1) = () + dp(X, 1)

. Spacetime: ds? = g, dx"dx" = — NZdt* + }/l-j(dxi + N'df)(dx’ + N/dr)
Gauge fixing condition:

» Comoving: 6¢p = 0 and Vii = azez(;éij

- Flat-slicing: 0¢p # O and y;; = azél-j

O
MP\ / 261

1 1.
(Non-linear) gauge transformation: { = {, + Zezfg | H{,’n{,’n + 0, ¢ =

Compute correlation function of Cn , then obtain correlation function of _.



Second-order action

5
Second-order action: §*) = M%Jdt d’x €,a’ [Cz ~(9,¢ )2]
a

Mukhanov-Sasaki (MS) variable: v = zCMp , 7 = ay/2¢€

Q) — l
2

Z//
Equation of motion: v, + <k2 ) Vv, =
é

« SR (e, 6], |63] < 1)

« USR (e, |63l < 1, €y =—6)

//
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v, + (kz

Jd’[ d3x [(v’)2 — (0)* + Z—szl

O, — = (CZH)2<2 — € + 562 — 5616’2 + Z€22 + 56263
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Curvature perturbation

Pure USR inflation (V(¢) = constant) corresponds to &, = 1 and &%, = 0

, iH , H* .
lim ¢(7) = Ak~ 09) = e '
ZMP\/ K3e,(7) pel

Superhorizon evolution of scale-invariant perturbation even at tree-level.

Transition makes initial condition of the USR period deviates from Bunch-Davies.

iH . . . .
HOE o e (1 + ikt) — Bre™ (1 — ikr)|
2MP\/ K3e,(7)

Coefficients &f; and 98, are obtained by requiring continuity of ;(7) and ,(7) at the transition.



Sharp transition




Two-point functions

k3

Power spectrum at the end of inflation: A?(O)(k) = Eye) | & .(t = 0) \2.
T

H2

A2 — A2 _
Large scale: A S(SR)(k) = A s(())(k < k)= ™ ZM}%Q(TS).

6 AZ i
s(PBH)
Small scale: A% pr & A2 oo (k %
mall scale: A{ppyyy & S(SR)( 2) ? .
\)

<0 (k)
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Cubic self-interaction

d"Vv
dg”

Derivative of the potential: V, =

] ]
Cubic action: Sé(fb) = — ngt d’x a’V36¢° = — EMZJdT d°x (a €1€2> &

As an alternative, performing IBP on the cubic action:

1 |
S(3) = — EMZJdT d’x (a” 6162) (= 2M§de d’x a’e,€48¢y
that is justified because ( f(T)C,f)’ does not contribute to correlation of ..

No subtlety for computing tree-level bispectrum (1st order perturbation), but we have to be careful when
computing tree-level trispectrum and one-loop power spectrum (2nd order perturbation).



Three-point functions

In-in formalism: (O(7)) = Z[T dr; Im <@(T)Hint(’cl)> with O(7) = i (7){y (7)Cx (7).

Bispectrum: ({y (7) (7)C, (7)) = (27)°8(k; + k, k3) Ok, (), (7)Ck, (D))

Maldacena’s theorem on squeezed limit of the bispectrum:

dlog A?(k, T)

lim (G (D (D (@) = = (k5. D) = DIG@ I, O nye 1) — 1 =

dlogk

L



Bispectrum

time
1
oading interacton: HS) = ~ 23 [ x ek’ e

0
Time integral: J dr ey(7)f(7) = Ae,| f(z,) — f(7,)]

Bispectrum:;

(G (0G0, () = - 2M§J dt e,(@esDaX @I |5 ()7 GO O | + perm,

— OO0



Bispectrum

Squezeed limit: <<Ck1(fo)5k2(fo)c_k2(fo)» = — Cy(ky) | Ckl(fo) ‘2 | Ckz(fo) ‘2,

C,(k) = 4M2Ae,Im

C;? (To)

| Ci(70) \2

:61(Te)az(Te)C:(Te)C];*(Te) = el(rs)az(fs)éf(fs)ég*(a):

10



One-loop correction

One-loop correction generated by cubic-order action is computed using in-in perturbation theory:

(O(7)) = <@(T)>(o )T (O(D) 1,1y + (O)02)

O@n=| da| do(H@0OHw).

<@(T)> (0,2) — = J dTlJ dTZ <@(T) nt(Tl) nt(7’-2)>

o0

Operator: O(z) = C,(79)¢_p(7) Where 75 — 0

1
L eading interaction: H (ng) = — EM 2Jd3x 6165025253



One-loop correction

time
space

One-loop correction to general scale p :

1 d k
<Cp(TO)§—p(TO)>(1) — ZMIA)LGIZ(Te)aél(Te)(AGZ)zJ (271_)3 ‘ C|k—p|(Te) ‘2f(p9 ka Te) ;

fip.k;t,) = 8 8(z,) " Im[E (z) &% (x,)1* + 32| &i(z,) I* Im[ & (1) C(z,) 1

+32Im[ ¢, (70) & (z,) Im[E,(7) (2 ) IRe[ P (7,)1(z,)] + 16 | £,(70) | Im[ (7,08 (7,) Im[ £ (70) S (7,)]



One-loop correction

For large loop momentum k > p

1 &k -
Gy = Ml A 6, | 516 16 IG5 m@icp)]
- , 1 .
Substituting [Im(fké}zX< )]T=Te = 4M3e,(z,)aX(z,) , We obtain
( = —(Ae,)?A? %AZ k
s(1) D> Tp) = ( €2)"850,(P> ) T (0K T) -
, 1
AT (Ae,)?

Scale-invariant one-loop correction? Note the importance of decaying mode, even at late time for long-
wavelength mode & .



Trlspectrum

time
space

(O(2))® = <@(T)>(O 2 T (0@) 1.1y +(O(D)) 02

Total contributions to the trispectrum:

. Exchange diagram with two H (?b) vertices

 s-channel: s = |k, + K, | (O@)1,1) = J dTlJ dz, <H(3)(Tl)@(T)H(3)(Tz)> ,

e t-channel: t = |K; + Kk; |

(O(D)) 92 = — J dTIJ dr, <@(T)H(3)(TI)H (3)(1'2)> .

o0

 u-channel: u = |k; + K, |

. Contact diagram with H (j;) vertex (O(7))P = ZJ dz; Im <@(1)H (4)(Tl)>



Quartic self-interaction

1 1
Cubic action: Sé(fb) = — ngt dx a3V35qb3 — gszdT d>x (a €1€2> 4’3

1 /
3) _ 21 A3 2, 3
Cubic Hamiltonian: H(¢) = 6M Jd (a 6162) Cy

1 1 Vs
Quartic action: S(4) = — —[dt d’x a’V,60* = — —Jdt d3x (zM)3—*
uartic action: Sy >4 40P = 2 (zMp) C

1 1 z 3 ,
Quartic Hamiltonian: H(4) = MZJd3x — (e,a%€)) — | 4+ =€ e a’e! 4

2

Seems easy and no problem!



Quartic-induced Hamiltonian

S(3)_1M2dd3 PN )
For the alternative cubic action: sp = 5 Mp T d°x a“e€65C, ¢

1
Quartic-induced Hamiltonian: H(jbl) — 1—6M2Jd3x 61261(65)252

In case eé is modelled as a Dirac-delta function of time, this H (41) generates trispectrum (and one-loop power
spectrum) proportional to Dirac-delta function of time (or inversely proportional to the duration of transition).
Very large and dangerous contribution!

However, this H™) must be added to the quartic Hamiltonian from quartic action H(;?



Total quartic Hamiltonian

1 1 z 3
Quartic Hamiltonian: H(jb) = MI%J'd3x [aH (€1a2€2) — (4 +5€2> (6161 62):| C4

24

1
Quartic-induced Hamiltonian: H*Y = —M2 d’x a 61(6 )22,’4
16 :

| 1 " 3
Total: HWY = H(4) + H(4D = M%Jd%c 7 (€1a2€é) — [(4 + 5€2> (elazeé)] c

o¢ 0P 24

The total quartic Hamiltonian is not proportional to (6&)2!



Total quartic Hamiltonian

1
If we start from H (fb) = EM 2Jd3 (a2€1€2) ) , Substitute it to the second-order perturbation theory (and

perform IBP) yields the quartic-induced Hamiltonian.

Take care of the total time derivative when performing IBP.

VAVAVAVAV4

1 7\ 7 1 ¥ 1 /
gde (5125152) G _Ede a%€1€, C’'C? Ede azeq(e;')=C*



Trispectrum

Explicit form of trispectrum is too long, but it satisfies Maldacena’s theorem.

0
"ok, ><<5k1(7)5k2(7)5k3(7)>>

3
Squeezed: lim 2 (G, (D)1, (D (D (7)) = ( Z

k=0 \Ck( 7)

—1
Collapsed: 1im ———— (& ()i (i (D@ = (ks D) = Din(kyo ?) = D18 (D) P18, 0.

p=0 1§, ()|




T(k) = soft limit of trispectrum evaluated at equilateral shape

BD(k) = running of bispectrum evaluated at equilateral shape

150 F

100 |

150 |

100 |
50 |

di

50

Trispectrum



Trispectrum

Second-order perturbation:

T T

(O(1)) = r dTIJ dz, <H(3)(71)@(T)H(3)(12)> — 2ReJ'T dTlJ' dz, <@(T)H(3)(71)H(3)(72)>

— QOO0 — QOO0

+2r dz; Im <@(7)H(4)(Tl)>

N\

. Trispectrum: O = *

Va\

 Bare one-loop power spectrum: O = ( :

If one claims set of H®) and H” that are consistent for one-loop power spectrum, one should be able to show
that the set generate consistent trispectrum.



One-loop correctlon

time
space

One-loop correction to general scale p (right diagram) :

<C (7)C— (To)>(1) = = M}%€1(T )a*( )(AGQ) f(P k;7,) ,
(2;:)

2 \
Im[$X (7)), (2 )] Gi(z,) |7

| 3
fip.ki,) = Im[z:,3<fo><:,;k<re><:;*<re>](—EAez\Ckw\2 > Re[ckue)c,;*(fe)]) -

2 k

€

. 2 ] 2 4+ k2
+Im[4“§(fo)§p2(fe)]<k—\C,Q(Te)\z — —AeRe[Gi(7,)¢ 7 (7,)] — oI i \Ck(fe)\z)



One-loop correctlon

time
space

For large loop momentum k >> p and summing with contribution from cubic Hamiltonian:

d*k 3 k* ) Ae . Ae,
5(1)(19» Tp) = AS(O)(Pa To)J (27)} Ae, gAez 3k2 | C(7) |7 — Aegy (2 "5 )Re [Ck(f )Z; (7 )] 3K2 ‘Ck( )‘

k,
S(l)(p, T)) = (13 3+ 13.51log — . ) Af(PBH) S(O)(p, Tp)



Physical picture
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At the transition, small-scale perturbations coherently kick the large-scale perturbation



Smooth transition




Wands duality
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e e  a B Y Sy PP = SN V) y- D S

Almost constant e, — | €3 | <K 1

[ A

Z// 2
<

72

SR:€, 6| K1

USR:¢; < l,e, @ —6

3

— = (aH)2<2 — €

2

1
€r — 5616’2

1

, |
462 26263

s —g W PIONOV. DTRTN - oo e P mes N BT BB W IRV . DL e ™

Dynamical €, —> | €5 | ~ O(1)

(g S J—

Z// 2
<

72
SR: €, |6, | < 1

USR: €1 < 1,62 ~ — 6

3 1,
Transition: —¢, + —¢;5 ~ ()
2 4




Two-point functions

Comparing power spectrum:

—— sharp

—  SIMOO0th

0.01}

0.001 0.010 0.100 1 10 100 1000
k/k,



3 1 €
Differential equation: —¢, + —62 + —= = constant.
2 4 2H

Taking time derivative: 0 = 2¢, + €56, — €57 .
Prove that €,(t)a*(7)e)(7) = constant :

(€,a%€5) = €,a”°H (2€) + 6,6} — €57) = 0.

1
Therefore in this setup: H(js) = EMZJ'd3 (a 6162) {,’3

1 1 z 3 ,
H(4) = M2Jd3x — (e,a%€)) — | 4+ =¢ e .a’e! 4

More on Wands duality



Bigger picture

Deviation from Wands duality condition generates higher-order correction to the correlation functions.
. . f)
Possible guidance for bootstrap* (aH) 22" | 2

— sharp

= Smooth



Direct approach

As an introduction, consider bispectrum in pure USR.

1 |
Field redefinition: £ = ¢, + —e, (2 A

Bispectrum of £, is 0, so the whole contributions come from the field redefinition terms.

At the end of inflation ¢ (t9) = 3H(, (1), so we have

1
(G (DG DG D) =2 (Ze’z 3

)

16,00 18,60 P+ 12,0 P16 @) P+ 16,00 P18 G0




Direct approach

As an alternative, we can start from cubic action of { (rather than {,):

1
SO = M%de d>x [Eazeleg (G

Bispectrum generated by the first total time derivative term:

<<§k1(70)5k2(70)5k3(70)» = 2M1%ImJ dz {61(7)62(7)02(7)

1 ,
(5“261‘?25'52 | Z{(C')zé')}

AN NN IS C e G ler o

_ zMI%q(rO)ez(ro)az(ro){ 1,00 1 670) PIm [ (0 | + perm}

€
—2 = { | Sk (70) %] Cr.. (7o) % + perm} (same as field redefinition approach)

4

perm




Direct approach

However, there is a subtlety at second-order perturbation theory.

<@(T)>(3) — <@(T)>30,2) T <@(T)>(1,1) T+ <@(T)>(o,z)

T

(O(D)1.1) = J dTlJ' dz, <H(3)(Tl)@(T)H(3)(T2)>

— Q0

(0@) 2= = | A [~ dey (6@H@)HO (2

P — 0 —O0

H® = Jd% (B¢, )] f/

¢time-ordered integral,feven total time derivative Hamiltonian induces correlation evaluated at the bulk.




Warm up

Consider B(x, 1) = c(1)C>(X, 7)

() = - | @ixdy | drRe (B[ B c0x 7). By )]
E A 9ic*(7)
(@(TO))(3) — Jd3x L dr,Re <@(TO) Mae (0 CH(x, T)>
- . A1 _ " ~ (41) s ~ 9ic*(1) 4
Quartic-induced: (O(ty))"™ = 2 dTllm<@(7)H (T1)> = |d’x| dr;Im({ O(z)) Mo )Lj (X, 7)
7, 7, pU~€\T

Total: {O(7y))? + (O(7y))*Y = 0



Warm up

Contribution of cubic total time derivative interaction at second-order perturbation mimics contribution of bulk
quartic interaction at first-order perturbation.

For &% 4’3, such contribution is cancelled by quartic-induced Hamiltonian.

How about B (¢ and B « (£')*C ? Will it generate contributions that cannot be captured by field
redefinition (at second-order)? To know the answer, we must know the whole quartic interaction of { (not C,).

This subtlety comes from time-ordered integral at second-order perturbation. It means that it is not only about
one-loop power spectrum O = (2, but also tree-level trispectrum 0 = ¢+

Quartic total time derivative interactions are evaluated at first-order perturbation, so their contribution will be
evaluated at the end of inflation (and we should not worry about them).



Warm up

/

1 1
Cubic action: SP[] = M%de d>x 5a2€1€éé’52 — (5a2€1€25'52 | IC_ZI(C')ZC)

To compute bispectrum at intermediate time (USR), field redefinition (or total time derivative terms) become
important.

lim (&, (DG (D (D) = = (ks ) = DIG@ P1G @1

Claimed in J. Fumagalli (2305.19263, 2408.08296), Y. Tada, 1. Terada, and J. Tokuda (2308.04732), R.
Kawaguchi, S. Tsujikawa, and Y. Tamada (2407.19742)

kyv dA?(O)(k, T,)

(T () J ki & dk




Direct approach

Cubic action: SV[] = SPIIL] + ST+ S\, [C]

1
S(3)[§ ] = M%J'df d3x5a2€1€é(§ (e

Sg)[g] — M%de dx (%azelezéj’g’z + %(C’)%T)

1 1
S]é?))l\/l[z:] — MI%J'dT d3x2 (Z€2§2 | aHZ.:/Z;) [(616122:/)/— 61612@25]

Field redefinition/gauge transformation: S*Y[£] + SO[¢] = S(z)[Cn] + S(3)[C ]

The differences between cubic action of { and {, are total time derivative terms.



Direct approach

Quartic action: SW[¢] = S(4)[C] + S(4)[Z_:]

1 1 ~ : ’
S5y 101 = ﬁMzJ'dT d’x [a—H (e1€30°) — <4+5€z) (616&612)] 3

I I I
SS[¢] = MI%JdT dx [—Eeleéaz( &7+ 2000 + e1a’(f) - elaz(df)zl f= Zezéz F— (¢

Field redefinition/gauge transformation: S(z)[C] + S(3)[Z_,'] + +S(4)[{,'] = S(z)[Cn] + S(3)[C | + +S(4)[Z_,' ]

The differences between cubic action of { and {, are (not only) total time derivative terms.



Direct approach

Cubic Hamiltonian: H®) = H(fb) + H(3) + HS)M , Hg) = B’ = Jd%%”

Substitute to second-order perturbation: (O(7))® = (@(7))(3) + (@(7))3

Claim: (@(T))Sg) effectively behaves as quartic contribution

<@(To)>gg) = 2Imro dz <@(TO)H (4)(7»

I I
HY(t) = -1 [H@)(T) +B(@ + EH]%W(T), B(7)



Direct approach

Expanding S[¢] (without doing IBP) yields

SO = M%de d’x [—%ela({,’ ) 361612((: Ve zelaéj £0°C — %elezazéj 20°¢

Quartic-induced Hamiltonian

9 9 3 6 1
H(4I) — MngBX [ 61(5;/)4 Hela(§/)3z; e 61(8;/)25625 4+ 961612(4’/)252 HelaC/é«Za2é’ > 6152(022;)2

4H?



Direct approach
Total: (0(z9)) = (O(@)2) + (0(7))2) + (O(x)) ™ + (O(7)) (D) + (O(z))(P

(O(7y)) = <@(To)>(3) T ZJ'TO dr Im<@(fo) (4)(7) T H(4D(T) T H(4)(T) T H(4)(T) )

Claim (very technical details): Héf) H“D H(4) — H(jbl)

Therefore (O(7,)) = (@(TO))(3) + (O(1) )(41) + (O(1) )(4) consistent with field redefinition approach.

Cubic total time derivative interactions do not give contribution evaluated in the bulk, even at second-order
perturbation.

No advantage of using direct approach, it just give us extra complication that can be extremely simplified by field
redefinition/gauge transformation.



EFT of inflation o

Substituting ¢ = — Hr + Hzir + O(x°) to SP[C] + SP[E] + +SW[£], we obtain
SO 7] = M%de d>xH 36162612 [ﬂ(n’)z — ﬂ(dﬂ)z]

1 /
SH[7r] = > ngT d>xH%,a” (622 | 6;{) [(ﬂ’)zﬂz = ﬂz(aﬂ)zl
a

Reproduces EFT of inflation by Firouzjahi (2303.12025, 2311.04080, 2403.03841)



Conclusion

Precision cosmology for inflation model with large fluctuations has just begun!

We have presented cubic and quartic self-interactions that yields consistent correlation function at second-
order perturbation theory: bispectrum, trispectrum, and one-loop power spectrum.

We have clarified two different approaches on computing correlation function at second-order perturbation:

field redefinition/gauge transformation and direct computation from action of . Cubic total time derivative
interactions do not give contribution evaluated in the bulk.

This is important to go further. After we know consistent interactions, we can proceed to compute one-loop
power spectrum at small scale to make prediction for the whole spectrum.



