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Introduction and motivation

⃝ The cosmology of the very early Universe is the unique arena to see how quantum fields
and gravity play together, creating the seeds for the observable Universe’s structure.
One would like to understand the initial conditions and how to make the precise predictions.

⃝ Even in the simplest models of the early Universe, making predictions gets complicated
relatively fast. More computation’ techniques are needed to test different ideas & scenarios.

⃝ The simplest toy model to rely on: scalar fields. They might play a central role at the
inflationary (quasi-)de Sitter stage & be responsible for the large-scale structure formation.

⃝ For quantum scalar fields living on de Sitter (dS) background, the choice of the vacuum
states becomes a non-trivial task. For a massive scalar field, there exists a one-parameter
family of dS-invariant vacuum states (Allen, Phys.Rev.D, 1985), while for a massless one
does not (Allen & Folacci, Phys.Rev.D, 1987).

⃝ Consequently, the abyss between perturbative computation’s results for massive and
massless scalar fields in de Sitter space appears: there is no regular massless limit.
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In this talk

· We consider a particular theory of a massive scalar field living on de Sitter background

Lm =
√
−g

(
1
2
ϕ ,µϕ,µ −

1
2
m2ϕ2 −

λ

4
ϕ4
)
, ds2 = dt2 − e2Htdx⃗2.

· In contrast to the standard massive scalar field theory based on the dS-invariant vacuum,
we develop some reasoning that may not possess dS invariance but results in a smooth
massless limit of the correlation functions in the long-wavelength approximation.

· We employ Yang-Feldman formalism (Yang & Feldman, Phys.Rev., 1950) that recursively
defines the interacting field as a coupling constant’s formal power series via the free one.
Such a formalism in dS appears to be rather convenient for the leading infrared logarithm
approximation (Woodard, Nucl. Phys. B, 2005; Tsamis & Woodard, Nucl. Phys. B, 2005, etc.).

· We propose a trick to «hang up» the mass that affords to calculate a correlation function
of a free massive scalar field and proceed with quantum corrections relying only on the
known correlation function’s infrared (IR) part of a free massless one.

· Through our the Yang-Feldman-type equation the quantum corrections for two- & four-
point correlation functions have been calculated. We are in agreement at late times with
Schwinger-Keldysh technique’s results and Starobinsky’s stochastic approach.
We compared our results with the Hartree-Fock approximation (leaves aside «Sunset»).

· At last, we have derived an autonomous equation for the two-point function. Integrating
its approximate version, one obtains a non-analytic expression with respect to a coupling
constant λ that reproduces the correct perturbative series up to the two-loop level.
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Yang-Feldman formalism

The Yang-Feldman formalism recursively defines the interacting field as a coupling
constant’s formal power series through the free field (Yang & Feldman, Phys.Rev., 1950).

In this approach, a solution to the Klein-Gordon equation for a scalar field is placed by

ϕ (t, x⃗) = ϕ0 (t, x⃗)−
∫

d 4x ′
√

−g(x ′)GR
(
t, x⃗ ; t′, x⃗ ′)V ′

ϕ

(
ϕ
(
t′, x⃗ ′)),

where ϕ0 (t, x⃗) is the solution for the homogeneous equation, □ϕ0 (t, x⃗) = 0, and the
Green’s function is any solution to □GR (t, x⃗ ; t′, x⃗ ′) = δ(t − t′) δ(x⃗ − x⃗ ′)/

√
−g(x ′) with

retarded boundary conditions, GR (t, x⃗ ; t′, x⃗ ′) = 0 for t ≤ t′. One expresses this solution as

GR
(
t, x⃗ ; t′, x⃗ ′) = iΘ(t − t′) ⟨

[
ϕ0 (t, x⃗) , ϕ0

(
t′, x⃗ ′)]⟩.

The representation of a scalar field in the commutator above upon canonically normalized
creation and annihilation operators is the following:

ϕ0 (t, x⃗) =

∫
d3k⃗

(2π)3/2

(
uk (t) ei k⃗ x⃗ â

k⃗
+ u∗k (t) e−i k⃗ x⃗ â†

k⃗

)
,

here modes uk (t) in the de Sitter space, ds2 = dt2 − e2Htdx⃗2, being the solution to

ük + 3Hu̇k + k2e−2Htuk = 0,

must be normalized through the Wronskian

W [uk (t), u
∗
k (t)] = u̇ku

∗
k − uk u̇

∗
k = −ie−3Ht

as a consequence of the canonical commutation relations.
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Yang-Feldman equation for a massless scalar field in de Sitter space

Then, straightforwardly,

GR
(
t, x⃗ ; t′, x⃗ ′) = iΘ(t − t′)

∫
d3k⃗

(2π)3
ei k⃗ (⃗x−x⃗ ′)

(
uk (t)u

∗
k (t

′)− u∗k (t) uk (t
′)
)
.

We are interested in the contribution of the very soft, long-wavelength (l-w) modes, whose
wave numbers are small, i.e., k ≤ HeHt .

Thus, one can neglect the last term ∼ k2, leading to the general solution as

ük + 3Hu̇k + k2e−2Htuk = 0 ⇒ ul-w
k (t) = c1 + c2 e−3Ht .

By employing Wronskian W [uk (t), u
∗
k (t)], namely, c∗1 c2 + c1c∗2 = i/3H, one gets

G l-w
R
(
t, x⃗ ; t′, x⃗ ′) = Θ(t − t′)

3H

(
e−3Ht′ − e−3Ht

)
δ(x⃗ − x⃗ ′).

Therefore, at the leading logarithm, the Yang-Feldman equation takes a simple form

ϕ (t, x⃗) = ϕ0 (t, x⃗)−
1

3H

t∫
0

dt′ V ′
ϕ

(
ϕ
(
t′, x⃗

))
.

Note that we did not use any particular choice of the vacuum.

Nonetheless, one can arrive at the same expressions of the retarded Green’s function and
equation above (Woodard, Nucl. Phys. B, 2005) owing to the explicit form for the basis
functions of the chosen vacuum in the Fock space, the so-called Bunch-Davies vacuum.
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Yang-Feldman-type equation for a massive scalar field in de Sitter space

Through the use of Yang-Feldman equation, we define the free massive via massless one as

ϕ̃ (t, x⃗) = ϕ0 (t, x⃗)−
m2

3H
e−

m2t
3H

t∫
0

dt′ e
m2t′

3H ϕ0
(
t′, x⃗

)
.

This introduced relation allows us to calculate the correlation function of a massive scalar
field, relying only on the known long-wavelength infrared part of the free massless one.

Furthermore, one can find the corresponding analog to the Yang-Feldman equation:

ϕ (t, x⃗) = ϕ̃ (t, x⃗)−
λ

3H
e−

m2t
3H

t∫
0

dt′ e
m2t′

3H ϕ 3 (t′, x⃗) ;
The iterated Yang-Feldman-type equation can be written out up to a few first terms as

ϕ (t, x⃗) = ϕ̃ (t, x⃗)−
λ

3H
e−

m2t
3H

t∫
0

dt′ e
m2t′

3H ϕ̃3 (t′, x⃗)

+
λ2

3H2 e−
m2t
3H

t∫
0

dt′ ϕ̃2 (t′, x⃗) t′∫
0

dt′′e
m2t′′

3H ϕ̃3 (t′′, x⃗) + ...

One can use it to calculate the correlation functions of the massive field ϕ (t, x⃗)
through the known correlation function of the free massless one ϕ0 (t, x⃗).
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Two-point correlation function for the free massive scalar field and a loop series

Let us calculate the two-point correlation function for the free massive field ϕ̃ (t, x⃗), where
the spatial’ spacetime points coincide while the time moments are different:

〈
ϕ̃ (t1, x⃗) ϕ̃ (t2, x⃗)

〉
≡
〈
ϕ̃ (t1) ϕ̃ (t2)

〉
=

3H4

8π2m2

(
e−

m2

3H |t1−t2| − e−
m2

3H (t1+t2)
)
;

where we have used the well-known long-wavelength infrared part of the free massless field

〈
ϕ0 (t1)ϕ0 (t2)

〉
=

H3t2

4π2 , t2 ≤ t1
(Vilenkin & Ford, Phys.Rev.D, 1982;

Linde, Phys.Lett.B, 1982).

The obtained
〈
ϕ̃ (t1) ϕ̃ (t2)

〉
exactly coincides with Ornstein-Uhlenbeck stochastic process’s

one. The notable feature is its drift towards average with a mean reversion rate of m2/3H.

In our development, the correlation functions have a smooth massless limit, coinciding with
the expressions obtained for a massless scalar field. Such a reasoning can be considered as
a theory of a massive scalar field with the vacuum «inherited» from the massless one.

Building on this correlator, one reaches the loop series through our Yang-Feldman equation〈
ϕ (t1)ϕ (t2)

〉
=
〈
ϕ̃ (t1) ϕ̃ (t2)

〉
+
〈
ϕ (t1)ϕ (t2)

〉
1−loop +

〈
ϕ (t1)ϕ (t2)

〉
2−loop

+
〈
ϕ (t1)ϕ (t2)

〉
3−loop + O

(
λ4) .

Full results up to three loops can be seen in our preprint on arXiv:[2410.16226].
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Four-point correlation function

In the case of the four-point correlation function, one can continue in the same calculation
manner. Even so, we already have the answer for the tree level〈

ϕ (t1)ϕ (t2)ϕ (t3)ϕ (t4)
〉
tree =

〈
ϕ̃ (t1) ϕ̃ (t2)

〉〈
ϕ̃ (t3) ϕ̃ (t4)

〉
+ perm.

Afterwards, for the linear order in λ, we partially also have the answer, since in this case,
the complete correlation function is splitted into connected

〈
ϕ (t1)ϕ (t2)ϕ (t3)ϕ (t4)

〉connected
1−loop = −

2λ
H

e−
m2t1
3H

t1∫
0

dt′e
m2t′

3H
〈
ϕ̃
(
t′
)
ϕ̃ (t2)

〉
×

×
〈
ϕ̃
(
t′
)
ϕ̃ (t3)

〉〈
ϕ̃
(
t′
)
ϕ̃ (t4)

〉
+ perm.;

and disconnected (just a combination of two-point functions) diagram’ types〈
ϕ (t1)ϕ (t2)ϕ (t3)ϕ (t4)

〉disconnected
1−loop =

〈
ϕ̃ (t1) ϕ̃ (t2)

〉〈
ϕ (t3)ϕ (t4)

〉
1−loop + perm.

We proceed up to〈
ϕ (t1)ϕ (t2)ϕ (t3)ϕ (t4)

〉
=
〈
ϕ (t1)ϕ (t2)ϕ (t3)ϕ (t4)

〉
tree

+
〈
ϕ (t1)ϕ (t2)ϕ (t3)ϕ (t4)

〉
1−loop +

〈
ϕ (t1)ϕ (t2)ϕ (t3)ϕ (t4)

〉
2−loop + O

(
λ3) .
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Сorrespondence between the Yang-Feldman and Schwinger-Keldysh formalisms

All the possible two-loop-level diagrams’ structures are the following:

and all integral structures for the two-point function in the Yang-Feldman-type equation:

I1,a =
2λ2

H2 e−
m2t1
3H

t1∫
0

dt′
t′∫

0

dt′′e
m2t′′
3H

〈
ϕ̃
(
t′
)
ϕ̃ (t2)

〉〈
ϕ̃
(
t′
)
ϕ̃
(
t′′
)〉〈

ϕ̃
2 (t′′)〉;

I2,a =
2λ2

H2 e−
m2t1
3H

t1∫
0

dt′
t′∫

0

dt′′e
m2t′′
3H

〈
ϕ̃
(
t′′
)
ϕ̃ (t2)

〉(〈
ϕ̃
(
t′
)
ϕ̃
(
t′′
)〉)2

;

I3,a =
λ2

H2 e−
m2t1
3H

t1∫
0

dt′
t′∫

0

dt′′e
m2t′′
3H

〈
ϕ̃
(
t′′
)
ϕ̃ (t2)

〉〈
ϕ̃

2 (t′)〉〈ϕ̃2 (t′′)〉;



Ii,b = Ii,a

with(
t1 ↔ t2

)

I4 =
2λ2

3H2 e−
m2
3H (t1+t2)

t1∫
0

dt′e
m2t′
3H

t2∫
0

dt′′e
m2t′′
3H

(〈
ϕ̃
(
t′
)
ϕ̃
(
t′′
)〉)3

;

I5 =
λ2

H2 e−
m2
3H (t1+t2)

t1∫
0

dt′e
m2t′
3H

t2∫
0

dt′′e
m2t′′
3H

〈
ϕ̃

2 (t′)〉〈ϕ̃ (t′) ϕ̃ (t′′)〉〈ϕ̃2 (t′′)〉 ;
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Сorrespondence between the Yang-Feldman and Schwinger-Keldysh formalisms

Our correspondence hypothesis is based on the following assignment assumption:

In order to obtain one of the diagrams’ topologies, the points might be connected either by
an explicit correlation function in integral structures or by integration variables’ limits.

I1,a =
2λ2

H2 e−
m2t1
3H

t1∫
0

dt′
t′∫

0

dt′′e
m2t′′

3H
〈
ϕ̃
(
t′
)
ϕ̃ (t2)

〉〈
ϕ̃
(
t′
)
ϕ̃
(
t′′
)〉〈

ϕ̃2 (t′′)〉
I1,b = I1,a with

(
t1 ↔ t2

)
〈
ϕ (t1)ϕ (t2)

〉Snowman
= I1,a + I1,b

late−−−−−→
times

243λ2H12

512π6m10

(
1 +

m2

3H
|t1 − t2|

)
e−

m2

3H |t1−t2|;〈
ϕ (t1)ϕ (t2)

〉 Sunset
= I2,a + I2,b + I4

late−−−−−→
times

243λ2H12

1024π6m10

((
1 +

2m2

3H
|t1 − t2|

)
e−

m2

3H |t1−t2| +
1
3

e−
m2

H
|t1−t2|

)
;

〈
ϕ (t1)ϕ (t2)

〉Ind. Loops
= I3,a + I3,b + I5

late−−−−−→
times

243λ2H12

1024π6m10

(
2 +

2m2

3H
|t1 − t2|+

m4

9H2 |t1 − t2|2
)

e−
m2

3H |t1−t2|;

These expressions at late times coincide with those obtained directly via Schwinger-Keldysh
(Gautier, Serreau, Phys. Lett. B, 2013; Kamenshchik, Starobinsky, Vardanyan, Eur.Phys.J. C, 2022).
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Comparison with the stochastic approach

Starobinsky stochastic approach (Starobinsky 1986; Starobinsky & Yokoyama, Phys.Rev.D, 1994)
matches the l-w part of the quantum field ϕ(t, x⃗) to the classical stochastic field φ(t, x⃗)
with a probability distribution function ρ

[
φ(t, x⃗)] that satisfies the Fokker-Planck equation

∂t ρ
[
φ(t, x⃗)

]
=

1
3H

∂φ
(
ρ
[
φ(t, x⃗)

]
V ′
φ

(
φ(t, x⃗)

))
+

H3

8π2 ∂2
φ

(
ρ
[
φ(t, x⃗)

])
.

Any solution of this Fokker-Planck equation tends to the static solution at late times

ρ
[
φ(t, x⃗)

] late−−−−−→
times

ρst [φ] =
1
N

e−
8π2

3H4 V (φ)
.

Therefore, the expectation values of this stochastic variable at small λ expansion is

〈
φ 2n〉 =

+∞∫
−∞

dφφ 2nρst [φ]

+∞∫
−∞

dφρst [φ]

−→


3H4

8π2m2 −
27λH8

64π4m6 +
81λ2H12

64π6m10 −
24057λ3H16

4096π8m14 + O
(
λ4) ;

27H8

64π4m4 −
81λH12

64π6m8 +
24057λ2H16

4096π8m12 + O
(
λ3) .

Since our obtained massive correlation function coincides with Ornstein-Uhlenbeck’s mean-
reverting stochastic process, our outcomes, as they must be, are in agreement at late times
with Starobinsky’s stochastic approach, which operates with a near-equilibrium state.

One can also reduce these expressions to modified Bessel functions of the 2nd kind Kν(z).
As it was shown (Kamenshchik, Starobinsky, Vardanyan, Eur.Phys.J. C, 2022),

+∞∫
−∞

dφρst [φ] = 1 → N =

+∞∫
−∞

dφ e−
8π2

3H4 V (φ)
=

m
√

2λ
exp

(
π2m4

3λH4

)
K1/4

(
π2m4

3λH4

)
.
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Comparison with the stochastic approach

One can notice that〈
φ2〉 = −

3H4

4π2
1
N

dN
dm2 ⇒

〈
φ2〉 = m2

2λ

(
K3/4(z)

K1/4(z)
− 1

)
, where z ≡

π2m4

3λH4 .

One can also proceed further and get the expression anew for
〈
φ4〉, such as

〈
φ4〉 = (−3H4

4π2

)2 1
N

d 2N
d (m2)2

⇒
〈
φ4〉 = 3H4

8π2λ
+

m4

2λ2

(
1 −

K3/4(z)

K1/4(z)

)
.

Let us point out the general structure of any 2n’th expectation value

d nN
d (m2)n

= αn
(
m2) ez K1/4(z) + βn

(
m2) ez K3/4(z),

since
d

dz
Kν(z) = −

ν

z
Kν(z)−Kν−1(z) and K−ν(z) = Kν(z),

where from the definition of N , α0 = m/
√

2λ and β0 = 0, and the recurrence relations are

αn+1 =
dαn

dm2 −
αn

2m2 +
2π2m2

3λH4

(
αn − βn

)
; βn+1 =

dβn

dm2 −
3βn

2m2 −
2π2m2

3λH4

(
αn − βn

)
,

resulting in〈
φ2n〉 = (−3H4

4π2

)n 1
N

d nN
d (m2)n

⇒
〈
φ2n〉 = √

2λ
m

(
−

3H4

4π2

)n(
αn + βn

K3/4(z)

K1/4(z)

)
.

At large z ≫ 1, this expansion reproduces our results for
〈
ϕ2 (t)

〉
and

〈
ϕ4 (t)

〉
at t → ∞.
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Comparison with the Hartree-Fock approximation

To compare our outcomes for
〈
ϕ2 (t)

〉
to those obtained in the Hartree-Fock (Gaussian)

approximation (HF), let us consider the Klein-Gordon equation.
After some manipulations with the use of HF, namely

〈
ϕ4 (t)

〉
= 3
〈
ϕ2 (t)

〉2, one has

d
〈
ϕ2〉
dt

=
H3

4π2 −
2m2

3H

〈
ϕ2〉− 2λ

H

〈
ϕ2〉2.

The solution to the equation above is

〈
ϕ2 (t)

〉
HF =

3H4

4π2m2

(
1 − exp

(
− 2m2t

3H

√
1 + 9λH4

2π2m4

))
1 +

√
1 + 9λH4

2π2m4 −
(

1 −
√

1 + 9λH4
2π2m4

)
exp

(
− 2m2t

3H

√
1 + 9λH4

2π2m4

) .

Expanding this solution in a series along a small self-interaction coupling constant λ, one
can find out that at the tree and at one-loop levels, HF gives the correct results, while at
the already two-loop level, it does not.

Through our results for each of the two-loop diagrams, we conclude that the Hartree-Fock
approximation only resummes the «Cactus» and «Double Seagull»-type diagrams, leaving

aside the «Sunset» one.

To «correct» the Hartree-Fock approximation, we further construct an autonomous
equation, which catches the absentee «Sunset» diagrammatic contribution.
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An autonomous equation for the two-point correlation function

The main idea is to get through the known perturbative series an autonomous first-order
differential equation (Kamenshchik & Vardanyan, Phys.Rev.D, 2020). The solution of such an
equation is the non-analytic on λ, while providing the correct series up to the two-loop level.

Our obtained perturbative series is

〈
ϕ2 (t)

〉
=

3H4

8π2m2

(
1 − e−

2m2t
3H

)
−

27λH8

64π4m6

(
1 −

4m2t

3H
e−

2m2t
3H − e−

4m2t
3H

)
+

81λ2H12

64π6m10

(
1 +

(
21
8

−
3m2t

2H
−

m4t2

3H2

)
e−

2m2t
3H −

(
3 +

2m2t

H

)
e−

4m2t
3H −

5
8
e−

2m2t
H

)
.

At the zero order in that series
〈
ϕ2 (t)

〉
on small coupling constant λ, we have

f (t) =
3H4

8π2m2

(
1 − e−

2m2t
3H

)
⇒ e−

2m2t
3H = 1 −

8π2m2

3H4 f (t);

This tree-level expression above is a solution to the following autonomous equation:

d

dt

(
f (t)

)
=

H3

4π2 −
2m2

3H
f (t).

One can take the time derivatives from both its l.h.s. and r.h.s. and extract the exponent
through f (t) to establish that.
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An autonomous equation for the two-point correlation function

To have an autonomous equation, whose solution has the correct expansion up to the
terms linear in λ, we substitute f (t) into l.h.s. and r.h.s. and find the correcting term

d

dt

(
f (t)

)
=

H3

4π2 −
2m2

3H
f (t) + ∆f 1(t), ∆f 1(t) = −

9λH7

32π4m4

(
1 − e−

2m2t
3H

)2
.

and equation appears to be the Hartree-Fock’s:

d

dt

(
f (t)

)
=

H3

4π2 −
2m2

3H
f (t)−

2λ
H

(
f (t)

)2
,

which was able to provide the correct result up to λ.

At the two-loop level, we will come to

d

dt

(
f (t)

)
=

H3

4π2 −
2m2

3H
f (t)−

2λ
H

(
f (t)

)2 −
27λ2H11

32π6m8

(
4π2m2

H4 f (t)−
16π4m4

H8

(
f (t)

)2
+

256π6m6

27H12

(
f (t)

)3
+

3
2

(
1 −

8π2m2

3H4 f (t)
)2

ln
(

1 −
8π2m2

3H4 f (t)

))
;

Taking the function f (t) as

f (t) =
〈
ϕ2 (t)

〉
HF + δf (t), δf (t) ∼ O(λ2),

one can find a cumbersome though straightforward expression for δf (t) through the
linearized version of the equation above; see our arXiv: [2410.16226] for the full one.
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An autonomous equation for the two-point correlation function

The limiting value of the obtained solution at t → ∞ is

δf (t)
t→∞−−−−−→

243λ2H12

32π6m10

(
−

3Z2 − 3Z − 2

6Z
(
Z + 1

)3 −
(
Z − 1

)2
4Z
(
Z + 1

)2 ln
(
Z − 1
Z + 1

))

≈
81λ2H12

256π6m10 + O
(
λ3) , where Z ≡

√
1 +

3
2z

and z ≡
π2m4

3λH4 .

It precisely matches with an absent «Sunset» contribution in Hartree-Fock approximation.

The full non-analytical on λ result for a two-point correlation function at late times is〈
ϕ2 (t)

〉aut
=
〈
ϕ2 (t)

〉
HF + δf (t)

t→∞−−−−→

−−→
H2

π
√
λ

(√
12z + 18 −

√
12z

12
+

(
3
√

4z2 + 6z − 2z − 9
)(√

12z + 18 −
√

12z
)3

1728z
√

4z2 + 6z

+
3
(√

2z + 3 −
√

2z
)4

64z2
√

12z + 18
ln

(√
2z + 3 +

√
2z

√
2z + 3 −

√
2z

))
m→ 0−−−−−→

7
√

2H2

24π
√
λ

.

Besides, it almost coincides with the Starobinsky’s stochastic approach’ result:〈
ϕ2〉aut

t→∞〈
φ2
〉
Stoch

z → 0−−−−→
7π

6
√

6 Γ2
( 3

4

) ≈ 0.9964 and

〈
ϕ2〉aut

t→∞〈
φ2
〉
Stoch

z →∞−−−−−→ 1

in the whole interval of a new dimensionless parameter 0 ≤ z ≡ π2m4

3λH4 < ∞.
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Conclusion

In contrast to the standard theory of a massive scalar field based on the de Sitter-invariant
vacuum, we developed some reasoning that may not possess de Sitter invariance but results
in a smooth massless limit of correlation functions in the long-wavelength approximation.

Through the Yang-Feldman-type equation, loop quantum corrections for the two-point and
four-point correlation functions’s infrared part have been calculated. The main «building
block» of ourelaborated approach is the free massive field’s two-point correlation function
that coincides with the Ornstein-Uhlenbeck stochastic process’s one.

Our outcomes are in agreement with the Schwinger-Keldysh results at late times and were
also compared to Starobinsky’s stochastic approach and the Hartree-Fock approximation.

At last, we constructed an autonomous equation for the two-point function. Integrating its
approximate version, one obtains a non-analytic expression with respect to a self-interaction
coupling constant λ that reproduces the correct perturbative series up to the two-loop level.
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Outlook

Physically, the more interesting case is when space points do not coincide, i.e., the case of
non-zero modes. Is our approach convenient to catch the leading infrared logarithm there?

In principle, one can use our approach to go beyond de Sitter spacetime. For the power-law
inflation, a(t) ∼ ts , in the Friedmann background (Lucchin & Matarrese, Phys. Rev. D, 1985),
one finds the analog to our Yang-Feldman-type equation:

ϕ (t, x⃗) = ϕ̃ (t, x⃗)−
λ

3s − 1
e−

m2t
3s−1

t∫
0

dt′ e
m2t′

3s−1 ϕ̃3 (t′, x⃗)+ ...

It would be also inquiring to bridge direct calculations and more novel techniques and ideas,
such as the wave-functional approach, cosmological polytopes, intersection theory, etc.

Thank you for your attention!
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Backup

ϕ (t, x⃗) = ϕ0 (t, x⃗) +

t∫
0

dt′ F
(
ϕ
(
t′, x⃗

))
,

where F
(
ϕ
(
t′, x⃗

))
has the form F

(
ϕ
(
t′, x⃗

))
= αϕ

(
t′, x⃗

)
+ W

(
ϕ
(
t′, x⃗

))
and ϕ0

(
t′, x⃗

)
is a given

function. Introducing the new scalar field ϕ̃ (t, x⃗), which satisfies the equation

ϕ̃ (t, x⃗) = ϕ0 (t, x⃗) + α

t∫
0

dt′ ϕ̃
(
t′, x⃗

)
,

and taking the time derivative, we can solve exactly an ordinary inhomogeneous first-order equation

ϕ̃ (t, x⃗) = ϕ0 (t, x⃗) + αeαt

t∫
0

dt′ e−αt′
ϕ0
(
t′, x⃗

)
, ϕ0 (t, x⃗) = ϕ̃ (t, x⃗) − α

t∫
0

ϕ̃
(
t′, x⃗

)
.

Substituting this expression

ϕ (t, x⃗) = ϕ̃ (t, x⃗) + α

t∫
0

dt′
(
ϕ
(
t′, x⃗

)
− ϕ̃

(
t′, x⃗

))
+

t∫
0

dt′ W
(
ϕ
(
t′, x⃗

))
,

and hereafter introduce a new equation

ϕ (t, x⃗) = ϕ̃ (t, x⃗) + eαt

t∫
0

dt′ e−αt′W
(
ϕ
(
t′, x⃗

))
,

which is equivalent to equation above. To establish this, one can express ϕ (t, x⃗) − ϕ̃ (t, x⃗), to
changing the order of integration and one can show this equation reduces to the previous one.
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Backup

〈
ϕ (t1)ϕ (t2)

〉
1−loop = −

27λH8

128π4m6

(
2 e−

m2
3H |t1−t2| +

4m2

3H

(
|t1 − t2| − (t1 + t2 )

)
e−

m2
3H (t1+t2)

− e
m2
3H
(
| t1−t2|−2(t1+t2)

)
+

2m2

3H
|t1 − t2|

(
e−

m2
3H |t1−t2| − e−

m2
3H (t1+t2)

)

− e−
m2
3H
(
|t1−t2|+2(t1+t2)

)
+ e−

m2
3H
(
2|t1−t2|+(t1+t2)

)
− e−

m2
3H (t1+t2)

)
;

〈
ϕ (t1)ϕ (t2)

〉
2−loop =

81λ2H12

2048π6m10

((
30 +

12m2

H
|t1 − t2| +

2m4

3H2 |t1 − t2|2
)

e−
m2
3H |t1−t2|

+ 2e−
m2
H |t1−t2| − 5 e−

m2
H (t1+t2) +

(
36 +

2m2

H

(
9 |t1 − t2| − 14 (t1 + t2)

)
−

2m4

3H2

(
|t1 − t2| − 2 (t1 + t2)

)2
)

e−
m2
3H (t1+t2) +

15
2

e−
m2
3H
(
3|t1−t2|+2(t1+t2)

)
+

(
48 +

2m2

H

(
7 |t1 − t2| + 2 (t1 + t2)

))
e−

m2
3H
(
2|t1−t2|+(t1+t2)

)
−
(

45 +
2m2

H

(
|t1 − t2| + 8 (t1 + t2)

))
e−

m2
3H
(
|t1−t2|+2(t1+t2)

)
−

15
2

e−
m2
3H
(
2|t1−t2|+3(t1+t2)

)
−
(

117
2

−
2m2

H

(
7 |t1 − t2| − 8 (t1 + t2)

))
e
m2
3H
(
|t1−t2|−2(t1+t2)

)
−

15
2

e
m2
3H
(
2|t1−t2|−3(t1+t2)

))
;
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