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Simplicity of Scattering Amplitudes

1 Scattering is one of the simplest process one can study in QFT and QG

2 To do this, we compute Scattering amplitudes

3 These are directly related to physical observables that are measurable in

experiments.

4 These are typically evaluated for (time-ordered) correlation functions along with

an LSZ prescription.
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1 For convenience they are usually evaluated in momentum space to exploit the

translational invariance of flat space.

2 Final answer is obtained by summing over Feynman diagrams in perturbation

theory. Quickly becomes very complicated, has spurious poles in intermediate

steps, etc..

3 Many times, the final answer is much simpler after all the algebra!

Early Examples include: De Witt (1967), Parke-Taylor Formula (1985).

4 The simplicity of amplitudes has been explored very heavily from early 2000’s and

led to the Amplitudes program.
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Moving Forward

1 How much simplicity for observables extend beyond scattering amplitudes?

2 Today: We focus on correlators without time-translational invariance,

⟨ψ|O(k⃗1) · · ·O(k⃗n)|ψ⟩

where O’s are operators at t = 0. Often known as in-in correlators.

3 While we mostly work with theories in Flat space, they are often related to

theories in (A)dS via a Weyl transform.

– Will not discuss examples with IR divergences in this talk.
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⟨O1 · · ·On⟩ = ⟨ψ|O(k⃗1) · · ·O(k⃗n)|ψ⟩

Interesting for two reasons

1 |ψ⟩ (wave function of the universe) are related to AdS correlators via analytic

continuation.

2 The correlator itself are called cosmological (or in-in) correlators.

Summary:

1 We find a novel integral representation for these correlator in terms of the

massive flat space S-matrix.

2 Show that (for some examples) Loops for in-in correlator have lower

transcendality than ψ.
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Going away from Amplitudes

1 Since we have translational invariance along spatial directions we work in

momentum space. Therefore x , y , z ∈ (−∞,∞) but t ∈ (−∞, 0).

2 Correlation functions can be computed from ψ via

⟨ϕ1 · · ·ϕn⟩ =
∫

Dϕ |Ψ[ϕ]|2 ϕ1 · · ·ϕn

where ϕn = ϕ(t = 0, k⃗n). At tree level Ψ and ⟨ϕ · · ·ϕ⟩ very similar.

3 The ground state Wave function is obtained via [Hartle-Hawking]

Ψ[φ(x⃗)] =

∫ ϕ(0,⃗x)=φ(⃗x)

ϕ(−∞)=0
Dϕ e iS[ϕ] = e iSon−shell [φ] .

– By analytical continuation, these are equivalent to computing correlators in AdS [Maldacena]
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Harmonic Oscillator

1 These Wave functions also satisfy Schrodinger Equation

HΨ = 0

2 For example: Ground state wave function for Harmonic Oscillator

H =
d2

dx2
+ ω2x2 =⇒ ψ(x) = e−

1
2
ω2x2

3 Similarly for a free scalar field you integrate over all oscillator modes [Hatfiled]

H =

∫
d3k

∂2

∂φ
k⃗
∂φ−k⃗

+ ω2
kφk⃗

φ−k⃗
=⇒ Ψ[φ] = e

− 1
2

∫
d3k ω2

kφk⃗
φ−k⃗
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1 We perturbatively evaluate the higher order corrections

2 Generic structure is of the form:

Ψ[φ] ∼ exp
[
−
∫

d3k1d
3k2 ψ2(k⃗1, k⃗2) φ(k⃗1)φ(k⃗2)

+

∫
d3k1 · · · d3k4 ψ4(k⃗1, · · · , k⃗4) φ(k⃗1) · · ·φ(k⃗4) + · · ·

]
– ψn(k⃗1, · · · , k⃗n) are called Wave function coefficients.

– For the free field case: ψ2 = ωk ; ψ4, ψ6, · · · = 0

3 Described as Old Fashioned Perturbation Theory (non-covariant)
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Witten Diagrams

1 Perturbation theory can be expressed in terms of Witten Diagrams

2 No time-translation invariance

ϕc
,

ϕq

Bulk-Boundary & Bulk-Bulk Propagators.

Example: for ψ4 in ϕ4 and ϕ3 theory:

,

3 Momentum conservation along spatial directions only.
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Example of a Witten diagram

1 Propagators are (Notation: k ≡ |k⃗|)

ϕc (t; k) = e ikt ,

G(t, t′; k) =
1

2k

[
θ(t − t′)e ik(t−t′) + θ(t′ − t)e ik(t

′−t)︸ ︷︷ ︸
Feynman

− e ik(t+t′)︸ ︷︷ ︸
B.C

]
Satisfies Dirichlet boundary conditions: G(0, t′) = 0. Not translational inv.

2 Example: Contribution to ψ4 for ϕ4,

k1 k2 k3k4 =

∫ 0

−∞
dte i(k1+k2+k3+k4)t

∫
d3xe i

∑
i k⃗i ·⃗x =

δ(k⃗1 + · · · k⃗4)
k1 + k2 + k3 + k4

– Hence instead of getting δ(kt) we get poles!
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ϕ3 theory

Consider an exchange diagram in ϕ3 theory: (k = |k⃗1 + k⃗2| and kij = |k⃗i | + |k⃗j |)

k⃗1 k⃗2 k⃗3k⃗4

k⃗ = k⃗1 + k⃗2

=

∫ 0

−∞
dt1dt2e

i(k1+k2)t1e i(k3+k4)t2G(t1, t2, k⃗1 + k⃗2)

=

∫ 0

−∞

dt1dt2e ik12t1e ik34t2

2k

[
Θ(t1 − t2)e

ik(t1−t2) +Θ(t2 − t1)e
ik(t2−t1) − e ik(t1+t2)

]
=

1

2k

[ 1

(k + k12)(k12 + k34)
+

1

(k + k34)(k12 + k34)
−

1

(k12 + k)(k34 + k)

]
=

1

(k12 + k34)(k + k12)(k + k34)
,

Cancellation of spurious poles. Simple answer! Recursive formulas via IBP [Arkani-Hamed,

Benincasa, Postnikov] .
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Singularities: Flat Space Limit

1 Singularities of Scattering amplitudes typically contain physical information.

— Do poles of correlator also contain physical info?

2 No poles for physical momenta. Singularities exist after analytically continuing

the momenta.

3 One important singularity: Flat Space Limit [Maldacena-Pimentel; Raju]

4 Translational invariance exists in 3-directions, not in 4-th.

– Flat space limit Restores translational invariance along 4-th direction,∫ 0

−∞
dte iEt −→

∫ ∞

−∞
dte iEt

=⇒
1

E
−→ δ(E)
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Flat Space limit

1 For example: Residue at 1
E

→ Flat space Scattering amplitude

Res
k12+k34=0

→

=⇒ Res
k12+k34=0

1

(k12 + k34)(k12 + k)(k34 + k)
=

1

(k⃗1 + k⃗2︸ ︷︷ ︸
k⃗

)2 − (|k⃗1|+ |k⃗2|︸ ︷︷ ︸
k12

)2
=

1

s

2 Wave function contains the Scattering amplitude!
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Correlators from Wave Function

1 Correlation functions can be computed via

⟨ϕ1 · · ·ϕn⟩ =
∫

Dϕ |Ψ[ϕ]|2 ϕ1 · · ·ϕn (*)

2 Therefore the cosmological correlator is one more path integral away from the

computation of the wave function. Hence it is expected to be more complicated.

3 But for conformally coupled scalar we find that it is simpler than the wave

function at loop level, due to many non-trivial cancellations!

– Not manifest from (*) .

– SK formalism and AdS effective actions are better in practice [Weinberg; Sleight,

Tarrona; di Pietro, Gorbenko, Komatsu] .
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Loops

1 Loop Corrections are perhaps not measurable anytime soon. But they are of

theoretical interest

2 For computing higher order corrections to AdS/CFT correlators

3 Of Mathematical interest: What kind of functions appear after integrations?

4 Several works on loop integrals and integrands: [all speakers in the conference! + Banados, Bianchi,

Munoz, Skenderis; Heckelbacher, Sachs, Skvortsov, Vanhove; Senatore, Gorbenko; Pajer, Lee, Anninos, Melville, Jazayeri, Anous,

Freedman, Konstantinidis, Mahajan, Shaghoulian, Benincasa, Pueyo, Brunello, Mandal, Mastrolia, Vazao; Seery, Starobinsky, Qin,

Xianyu, Baumann, Pimentel, Joyce, Arkani-Hamed, etc. ]

5 I will review some explicit examples loop integrals for Ψ and for the cosmological

correlators.
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Why is it difficult?

1 Scattering amplitudes in flat space are squares of momenta

Bubble =

∫
d4l

l2(l + k)2

2 Ψ Loops are not squares!

Generic Loop Integral for Ψ =

∫
d3l

|⃗l + k⃗| × (|⃗l |+ |k⃗|+ |⃗l + k⃗ ′|)× · · ·

3 Not easy to combine denominators via Schwinger or Feynman parametrizations.

4 All examples explicitly computed till now in momentum space have axi-symmetry.

[See Benincasa, Brunello, Mandal, Mastrolia, Vazao for an analysis of the triangle diagram.]
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Loops: Examples

1 Consider the 4-pt bubble diagram for the wave function [Albayrak, CC, Kharel; CC, Singh]

=
1

k

[π2

3
+

4k log 2

k12 + k34
+ log2

(
k34 − k

k + k12

)
+ log2

(
k12 − k

k + k34

)
− log2

(
k + k12

k + k34

)
+ 2Li2

k + k34

k − k12
+ 2Li2

k + k12

k − k34
+

4k

k2
12 − k2

34

(
k34 log

k + k12

Λ
− k12 log

k + k34

Λ

)]
– This has higher transcendality (Li2) than its scattering amplitude counterpart

(log)! (independent of choice of regulator)

– Flat Space limit recovers expected structure as UV properties are unaffected.
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in-in Correlator

Computing the in-in correlator at same order gives: [Lee; CC, Lipstein, Mei, Sachs, Vanhove]

1 Bubble in hard-cutoff

1

(k12 + k34)

[
ln

(
(k12 + |k⃗12|)(k34 + |k⃗12|)

4Λ2

)
+

k12 + k34

k12 − k34
ln

(
k34 + |k⃗12|
k12 + |k⃗12|

)]

No Li2 or log2, hence simpler than Ψ! Above answer does not satisfy CWI.

— Analytic regularization preserves conformal invariances; same structure with

Λ → k12 + k34. Gives ratios of momenta inside Logs.

2 Similar simplicity observed for necklace diagram at 2-loops, tadpoles, etc.

3 The simplicity in this case be traced back to the integrand.
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1 In this simple example, the simplicty for the in-in correlator can be explained by

the following structure of the integrand:

ψ :

∫
d3l

(E + 2l)(k12 + l + |⃗l + k|)(k34 + l + |⃗l + k|)
,

corr :

∫
d3l

l(k12 + l + |⃗l + k|)(k34 + l + |⃗l + k|)

In the case of correlator, the pole at l = 0 does not increase transcendentality

because of the measure d3l . (E = k12 + k34)

2 For every example we have computed, the wave function always has the pole
1

E+2l
whereas correlator never has this pole and instead has 1

l
.

3 Hints that the poles of a correlator has an overlap with the poles of S-matrix [Lee] .

4 Recent analysis via differential equations analysis might aid in studying these

more explicitly [de la Cruz, Vanhove; Benincasa, Brunello, Mandal, Mastrolia, Vazao] .
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Correlator[S-matrix]

1 All these hints led us to the following formula, [CC, Lipstein, Mei, Sachs, Vanhove]

⟨ϕ1(k1) · · ·ϕn(kn)⟩ =
∫ ∞

−∞

∏
i

dpi R(pi ) S(p1, k1; · · · , pn, kn)

– Suggests an “Inverse LSZ”: correlator obtained from the S-matrix ! Similar in

spirit to the in-out approach [Pajer, Donath]

2 Auxialiary propagators R(p) are theory dependent. [(in progress)]

– For ϕ4 theory they are simply [CC, Lipstein, Mei, Sachs, Vanhove]

R(p) =
1

p2 + k2

3 Example: the in-in bubble in this representation is

=

∫ ∞

−∞

dp

(p2 + k2
12)(p

2 + k2
34)

∫
d4L

L2(L+ K)2

where Lµ = (l + p, l⃗), Kµ = (p, k⃗).
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Conclusion

1 Find a hint of simplification beyond amplitudes in flat space.

2 Many tools used for studying amplitudes can be generalized to Wave

functions/Correlators: Differential equations, IBP, etc.

3 How general is the Inverse-LSZ like formula? Can one use it to study

discontinuities/cuts?

4 Cosmological correlators have simpler poles than wave functions (at least at

conformal coupling).

5 How does all of this generalize to cases with IR divergences?
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