Motivation 0000	Flat Limit 00	Correlators 0000000	

Simplicity of in-in Correlators

Chandramouli Chowdhury

STAG Research Centre University of Southampton

Looping in the Primordial Universe, CERN, 2024

Simplicity of in-in Correlators

Motivation 0000	Flat Limit 00	Correlators 0000000	

Based on:

2312.13803 with Arthur Lipstein, Jiajie Mei, Ivo Sachs and Pierre Vanhove

 and

24xx.yyyy with Arthur Lipstein, Joe Marshal, Jiajie Mei and Ivo Sachs

Uni of Southampton

Motivation ●000	Flat Limit 00	Correlators 0000000	

Simplicity of Scattering Amplitudes

- I Scattering is one of the simplest process one can study in QFT and QG
- **2** To do this, we compute Scattering amplitudes
- These are directly related to physical observables that are measurable in experiments.
- These are typically evaluated for (time-ordered) correlation functions along with an LSZ prescription.

Image: Image:

Motivation O●OO	Flat Limit 00	Correlators 0000000	

- For convenience they are usually evaluated in momentum space to exploit the translational invariance of flat space.
- Final answer is obtained by summing over Feynman diagrams in perturbation theory. Quickly becomes very complicated, has spurious poles in intermediate steps, etc..
- Many times, the final answer is much simpler after all the algebra! Early Examples include: De Witt (1967), Parke-Taylor Formula (1985).
- The simplicity of amplitudes has been explored very heavily from early 2000's and led to the Amplitudes program.

Motivation 00●0	Flat Limit 00	Correlators 0000000	

Moving Forward

I How much simplicity for observables extend beyond scattering amplitudes?

2 Today: We focus on correlators without time-translational invariance,

$$\langle \psi | O(\vec{k_1}) \cdots O(\vec{k_n}) | \psi \rangle$$

where O's are operators at t = 0. Often known as in-in correlators.

- While we mostly work with theories in Flat space, they are often related to theories in (A)dS via a Weyl transform.
 - Will not discuss examples with IR divergences in this talk.

Image: Image:

Motivation 000●	Flat Limit 00	Correlators 0000000	

$$\langle O_1 \cdots O_n \rangle = \langle \psi | O(\vec{k_1}) \cdots O(\vec{k_n}) | \psi \rangle$$

Interesting for two reasons

- ${\rm I\!I}~|\psi\rangle$ (wave function of the universe) are related to AdS correlators via analytic continuation.
- 2 The correlator itself are called cosmological (or in-in) correlators.

Summary:

- We find a novel integral representation for these correlator in terms of the massive flat space S-matrix.
- **2** Show that (for some examples) Loops for in-in correlator have lower transcendality than ψ .

Motivation 0000	$_{ m 000000}^{\psi}$	Flat Limit 00	Correlators 0000000	

Going away from Amplitudes

I Since we have translational invariance along spatial directions we work in momentum space. Therefore x, y, z ∈ (-∞, ∞) but t ∈ (-∞, 0).

2 Correlation functions can be computed from ψ via

$$\langle \phi_1 \cdots \phi_n \rangle = \int D\phi |\Psi[\phi]|^2 \phi_1 \cdots \phi_n$$

where $\phi_n = \phi(t = 0, \vec{k_n})$. At tree level Ψ and $\langle \phi \cdots \phi \rangle$ very similar.

3 The ground state Wave function is obtained via [Hartle-Hawking]

$$\Psi[\varphi(\vec{x})] = \int_{\phi(-\infty)=0}^{\phi(0,\vec{x})=\varphi(\vec{x})} D\phi \ e^{iS[\phi]} = e^{iS_{on-shell}[\varphi]}$$

- By analytical continuation, these are equivalent to computing correlators in AdS [Maldacena]

イロト イポト イヨト イヨト

Motivation 0000	ψ 00000	Flat Limit 00	Correlators 0000000	

Harmonic Oscillator

I These Wave functions also satisfy Schrodinger Equation

$$H\Psi = 0$$

2 For example: Ground state wave function for Harmonic Oscillator

$$H = \frac{d^2}{dx^2} + \omega^2 x^2 \implies \psi(x) = e^{-\frac{1}{2}\omega^2 x^2}$$

Similarly for a free scalar field you integrate over all oscillator modes [Hatfiled]

$$H = \int d^3k \frac{\partial^2}{\partial \varphi_{\vec{k}} \, \partial \varphi_{-\vec{k}}} + \omega_k^2 \varphi_{\vec{k}} \varphi_{-\vec{k}} \implies \Psi[\varphi] = e^{-\frac{1}{2} \int d^3k \, \omega_k^2 \varphi_{\vec{k}} \varphi_{-\vec{k}}}$$

Chandramouli Chowdhury

Simplicity of in-in Correlators

Uni of Southampton

Motivation	ψ	Flat Limit	Correlators	
0000	00●000	00	0000000	

We perturbatively evaluate the higher order corrections

2 Generic structure is of the form:

$$\Psi[\varphi] \sim \exp\left[-\int d^3k_1 d^3k_2 \ \psi_2(\vec{k_1}, \vec{k_2}) \ \varphi(\vec{k_1})\varphi(\vec{k_2}) \right. \\ \left. + \int d^3k_1 \cdots d^3k_4 \ \psi_4(\vec{k_1}, \cdots, \vec{k_4}) \ \varphi(\vec{k_1}) \cdots \varphi(\vec{k_4}) + \cdots \right]$$

- $-\psi_n(\vec{k_1},\cdots,\vec{k_n})$ are called Wave function coefficients.
- For the free field case: $\psi_2 = \omega_k$; $\psi_4, \psi_6, \cdots = 0$
- Described as Old Fashioned Perturbation Theory (non-covariant)

イロト イポト イヨト イヨト

Motivation 0000	ψ 000000	Flat Limit 00	Correlators 0000000		
Witten Diagr	ams				
Perturbation theory can be expressed in terms of Witten Diagrams					
No tim	e-translation invaria	nce			

 ϕ_c

 ϕ_q

3 Momentum conservation along spatial directions only.

Motivation	ψ	Flat Limit	Correlators	
0000	0000●0	00	0000000	

Example of a Witten diagram

1 Propagators are (Notation: $k \equiv |\vec{k}|$)

$$\phi_c(t;k) = e^{ikt},$$

$$G(t,t';k) = \frac{1}{2k} \Big[\underbrace{\theta(t-t')e^{ik(t-t')} + \theta(t'-t)e^{ik(t'-t)}}_{Feynman} - \underbrace{e^{ik(t+t')}}_{B.C} \Big]$$

Satisfies Dirichlet boundary conditions: G(0, t') = 0. Not translational inv.

2 Example: Contribution to ψ_4 for ϕ^4 ,

$$\int_{k_1}^{k_2} \int_{k_3}^{k_4} \int_{k_4}^{k_4} = \int_{-\infty}^{0} dt e^{i(k_1+k_2+k_3+k_4)t} \int d^3x e^{i\sum_i \vec{k_i} \cdot \vec{x}} = \frac{\delta(\vec{k_1}+\cdots \vec{k_4})}{k_1+k_2+k_3+k_4}$$

イロト イポト イヨト イヨ

Uni of Southampton

– Hence instead of getting $\delta(k_t)$ we get poles!

Chandramouli Chowdhury

Simplicity of in-in Correlators

Motivation 0000	ψ 00000	Flat Limit 00	Correlators 0000000	
ϕ^3 theory				

Consider an exchange diagram in ϕ^3 theory: $(k = |\vec{k_1} + \vec{k_2}| \text{ and } k_{ij} = |\vec{k_i}| + |\vec{k_j}|)$

$$\vec{k_1} \underbrace{\vec{k_2}}_{\vec{k_2} \neq \vec{k_4}} \underbrace{\vec{k_3}}_{\vec{k_1} \neq \vec{k_2}} = \int_{-\infty}^{0} dt_1 dt_2 e^{i(k_1+k_2)t_1} e^{i(k_3+k_4)t_2} G(t_1, t_2, \vec{k_1} + \vec{k_2})$$

$$\begin{split} &= \int_{-\infty}^{0} \frac{dt_{1}dt_{2}e^{ik_{12}t_{1}}e^{ik_{34}t_{2}}}{2k} \Big[\Theta(t_{1}-t_{2})e^{ik(t_{1}-t_{2})} + \Theta(t_{2}-t_{1})e^{ik(t_{2}-t_{1})} - e^{ik(t_{1}+t_{2})}\Big] \\ &= \frac{1}{2k} \Big[\frac{1}{(k+k_{12})(k_{12}+k_{34})} + \frac{1}{(k+k_{34})(k_{12}+k_{34})} - \frac{1}{(k_{12}+k)(k_{34}+k)}\Big] \\ &= \frac{1}{(k_{12}+k_{34})(k+k_{12})(k+k_{34})}, \end{split}$$

Cancellation of spurious poles. Simple answer! Recursive formulas via IBP [Arkani-Hamed, Benincasa, Postnikov] .

イロト イポト イヨト イヨト

Motivation 0000	Flat Limit ●O	Correlators 0000000	

Singularities: Flat Space Limit

Singularities of Scattering amplitudes typically contain physical information.
 — Do poles of correlator also contain physical info?

- No poles for physical momenta. Singularities exist after analytically continuing the momenta.
- 3 One important singularity: Flat Space Limit [Maldacena-Pimentel; Raju]

Translational invariance exists in 3-directions, not in 4-th.

- Flat space limit Restores translational invariance along 4-th direction,

$$\int_{-\infty}^{0} dt e^{iEt} \longrightarrow \int_{-\infty}^{\infty} dt e^{iEt}$$
 $\implies \frac{1}{E} \longrightarrow \delta(E)$

Motivation 0000	Flat Limit O●	Correlators 0000000	

Flat Space limit

I For example: Residue at $\frac{1}{F} \rightarrow$ Flat space Scattering amplitude

《曰》《卽》《臣》《臣

Uni of Southampton

2 Wave function contains the Scattering amplitude!

Chandramouli Chowdhury

Simplicity of in-in Correlators

Motivation 0000	Flat Limit 00	Correlators ●000000	

Correlators from Wave Function

Correlation functions can be computed via

$$\langle \phi_1 \cdots \phi_n \rangle = \int D\phi |\Psi[\phi]|^2 \phi_1 \cdots \phi_n$$
 (*)

Image: A matrix

- Therefore the cosmological correlator is one more path integral away from the computation of the wave function. Hence it is expected to be more complicated.
- But for conformally coupled scalar we find that it is simpler than the wave function at loop level, due to many non-trivial cancellations!
 - Not manifest from (*) .
 - SK formalism and AdS effective actions are better in practice [Weinberg; Sleight,

Tarrona; di Pietro, Gorbenko, Komatsu] .

Motivation 0000	ψ 000000	Flat Limit OO	Correlators ○●○○○○○	
Loops				

- Loop Corrections are perhaps not measurable anytime soon. But they are of theoretical interest
- Proceeding For computing higher order corrections to AdS/CFT correlators
- **3** Of Mathematical interest: What kind of functions appear after integrations?
- Several works on loop integrals and integrands: [all speakers in the conference! + Banados, Bianchi, Munoz, Skenderis; Heckelbacher, Sachs, Skvortsov, Vanhove; Senatore, Gorbenko; Pajer, Lee, Anninos, Melville, Jazayeri, Anous, Freedman, Konstantinidis, Mahajan, Shaghoulian, Benincasa, Pueyo, Brunello, Mandal, Mastrolia, Vazao; Seery, Starobinsky, Qin, Xianyu, Baumann, Pimentel, Joyce, Arkani-Hamed, etc.]

I will review some explicit examples loop integrals for Ψ and for the cosmological correlators.

Image: Image:

Motivation 0000	Flat Limit 00	Correlators 00●0000	

Why is it difficult?

Scattering amplitudes in flat space are squares of momenta

$$\mathsf{Bubble} = \int \frac{d^4 l}{l^2 (l+k)^2}$$

2 Ψ Loops are not squares!

Generic Loop Integral for
$$\Psi = \int \frac{d^3l}{|\vec{l} + \vec{k}| \times (|\vec{l}| + |\vec{k}| + |\vec{l} + \vec{k'}|) \times \cdots}$$

3 Not easy to combine denominators via Schwinger or Feynman parametrizations.

All examples explicitly computed till now in momentum space have axi-symmetry. [See Benincasa, Brunello, Mandal, Mastrolia, Vazao for an analysis of the triangle diagram.]

Motivation 0000		Flat Limit 00	Correlators 000€000	
	1			
Loons' Evami	nlec			

I Consider the 4-pt bubble diagram for the wave function [Albayrak, CC, Kharel; CC, Singh]

$$= \frac{1}{k} \left[\frac{\pi^2}{3} + \frac{4k \log 2}{k_{12} + k_{34}} + \log^2 \left(\frac{k_{34} - k}{k + k_{12}} \right) + \log^2 \left(\frac{k_{12} - k}{k + k_{34}} \right) - \log^2 \left(\frac{k + k_{12}}{k + k_{34}} \right) \right. \\ \left. + 2\text{Li}_2 \frac{k + k_{34}}{k - k_{12}} + 2\text{Li}_2 \frac{k + k_{12}}{k - k_{34}} + \frac{4k}{k_{12}^2 - k_{34}^2} \left(k_{34} \log \frac{k + k_{12}}{\Lambda} - k_{12} \log \frac{k + k_{34}}{\Lambda} \right) \right]$$

- This has higher transcendality (Li₂) than its scattering amplitude counterpart (log)! (independent of choice of regulator)

- Flat Space limit recovers expected structure as UV properties are unaffected.

Image: A matrix

Motivation 0000	Flat Limit 00	Correlators 0000●00	

in-in Correlator

Computing the in-in correlator at same order gives: [Lee; CC, Lipstein, Mei, Sachs, Vanhove]

Bubble in hard-cutoff

$$\frac{1}{(k_{12}+k_{34})}\left[\ln\left(\frac{(k_{12}+|\vec{k}_{12}|)(k_{34}+|\vec{k}_{12}|)}{4\Lambda^2}\right)+\frac{k_{12}+k_{34}}{k_{12}-k_{34}}\ln\left(\frac{k_{34}+|\vec{k}_{12}|}{k_{12}+|\vec{k}_{12}|}\right)\right]$$

No Li₂ or log², hence simpler than Ψ ! Above answer does not satisfy CWI. — Analytic regularization preserves conformal invariances; same structure with $\Lambda \rightarrow k_{12} + k_{34}$. Gives ratios of momenta inside Logs.

- 2 Similar simplicity observed for necklace diagram at 2-loops, tadpoles, etc.
- **3** The simplicity in this case be traced back to the integrand.

イロト イポト イヨト イヨ

In this simple example, the simplicity for the in-in correlator can be explained by the following structure of the integrand:

$$\psi: \int \frac{d^{3}l}{(E+2l)(k_{12}+l+|\vec{l}+k|)(k_{34}+l+|\vec{l}+k|)}$$

corr:
$$\int \frac{d^{3}l}{l(k_{12}+l+|\vec{l}+k|)(k_{34}+l+|\vec{l}+k|)}$$

In the case of correlator, the pole at l = 0 does not increase transcendentality because of the measure d^3l . ($E = k_{12} + k_{34}$)

- **2** For every example we have computed, the wave function always has the pole $\frac{1}{E+2I}$ whereas correlator never has this pole and instead has $\frac{1}{I}$.
- \blacksquare Hints that the poles of a correlator has an overlap with the poles of S-matrix [Lee].
- Recent analysis via differential equations analysis might aid in studying these more explicitly [de la Cruz, Vanhove; Benincasa, Brunello, Mandal, Mastrolia, Vazao].

Image: Image:

Motivation 0000	Flat Limit 00	Correlators 000000●	

Correlator[S-matrix]

I All these hints led us to the following formula, [CC, Lipstein, Mei, Sachs, Vanhove]

$$\langle \phi_1(k_1)\cdots\phi_n(k_n)\rangle = \int_{-\infty}^{\infty}\prod_i dp_i R(p_i) S(p_1,k_1;\cdots,p_n,k_n)$$

- Suggests an "Inverse LSZ": correlator obtained from the S-matrix ! Similar in spirit to the in-out approach [Pajer, Donath]

2 Auxialiary propagators R(p) are theory dependent. [(in progress)]

$$R(p) = \frac{1}{p^2 + k^2}$$

3 Example: the in-in bubble in this representation is

$$=\int_{-\infty}^{\infty}\frac{dp}{(p^2+k_{12}^2)(p^2+k_{34}^2)}\int\frac{d^4L}{L^2(L+K)^2}$$

where $L^{\mu} = (I + p, \vec{I}), \ K^{\mu} = (p, \vec{k}).$

イロト イポト イラト イラ

Motivation 0000	Flat Limit 00	Correlators 0000000	Conclusion

Conclusion

- **I** Find a hint of simplification beyond amplitudes in flat space.
- Many tools used for studying amplitudes can be generalized to Wave functions/Correlators: Differential equations, IBP, etc.
- How general is the Inverse-LSZ like formula? Can one use it to study discontinuities/cuts?
- Cosmological correlators have simpler poles than wave functions (at least at conformal coupling).
- 5 How does all of this generalize to cases with IR divergences?