

 $Sketch$ Inflation has been studied for 40 years, mostly in slow-roll. We can learn more by studying different regimes.

 $\mathcal{P}_{\mathcal{R}} \propto H^4/\dot{\phi}^2$

1

source tensor modes.

 $\partial^2 h_{ij} \sim \left[\partial_i \mathcal{R} \partial_j \mathcal{R}\right]^{\text{TT}}$

4

The gravitational wave spectrum is...

 $\Omega_{\rm GW} \sim \langle h^2 \rangle \sim \langle \mathcal{R}^4 \rangle$

We want to study the effect of non-Gaussianities.

★ Domenech 2109.01398

Ballesteros, Gambín 2404.07196 Cai et al. 1810.11000, Li et al. 2309.07792

Interactions

Minimally-coupled inflaton.

$$
\Phi(t,\bm{x}) = \phi(t) + \fbox{$\delta \phi(t,\bm{x})$}
$$

 $J{\rm NL}$

We work in the $\delta\phi$ gauge \parallel we need the <u>fourth-order action</u>. There are many interactions because of curvature. Most of them are suppressed by powers of ϕ^2 .

Only the self-interactions survive.

2

$$
S = \int d^4x \left[\frac{a^3}{2} \delta \dot{\phi}^2 - \frac{a}{2} (\nabla \delta \phi)^2 - a^3 \sum_n \left[\frac{V_n}{n!} \delta \phi^n \right] \right]
$$

The final step is performing a change of gauge

$$
\mathcal{R} = -\frac{H}{\dot{\phi}}\delta\phi - \frac{1}{2}\eta\!\!\left(\frac{H}{\dot{\phi}}\delta\phi\right)^2 - \frac{1}{3}\!\left(\eta^2 + \frac{\dot{\eta}}{2H}\right)\!\!\left(\frac{H}{\dot{\phi}}\delta\phi\right)^3 + \mathcal{O}(\delta\phi^4)
$$

 $g_{\rm NL}$

Two sources of NG

Feynman rules

Correlators of $\mathcal R$ have external dashed lines.

- **1** Choose how to replace each factor of \mathcal{R} by $\delta\phi$.
-
- 2 Contract the $\delta\phi$ using in-in to account for self-interactions.

 \star Ballesteros, Gambín 2404.07196 \bullet Cai et al. 1810.11000, Li et al. 2309.07792

Numerical results

Perturbation theory may be violated depending on the model parameters. Self-interactions provide the dominant contribution!

More Feynman rules

7

We add the following Feynman rules.

Gravitational waves

mmm

Interactions

We study only the effect on the initial conditions. We neglect tensor-tensor interactions.

There is only one diagram at the Gaussian level.

Non-Gaussian corrections are obtained by joining the corners of the following box.

Adshead et al. 2105.01659, Li et al. 2309.07792

Induced gravitational wave spectrum

The leading contribution is at one loop, so we must go to two loops.

These diagrams violate helicity conservation. These are obtained by replacing the one-loop scalar spectrum. These involve computing 6D integrals.

Numerical results

Perturbation theory may be violated depending on the model parameters. Self-interactions provide the dominant contribution!

Consistency relation

12

The consistency relation is satisfied even when there is a USR phase.

It works as long as the bispectrum is evaluated <u>after USR</u> (not during!).

> This shows we have included all the relevant interactions.

Consistency relation for anisotropies

Anisotropies also obey a consistency relation.

$$
C_{\ell}(\tau_{\star}, x_{\star}, q) = \frac{2\pi \mathcal{P}_{\mathcal{R}}^{\mathrm{L}}}{\ell(\ell+1)} \bigg\{ \frac{\Omega_{\mathrm{NG}}(\tau_{\star}, x_{\star}, q)}{\Omega_{\mathrm{GW}}(\tau_{\star}, q)} + \frac{3}{5} \bigg[4 - \frac{\partial \log \Omega_{\mathrm{GW}}(\tau_{\star}, q)}{\partial \log q} \bigg] \bigg\}^2
$$

The angular power spectrum from induced GWs in single-field inflation is completely determined by the **scalar and tensor tilt**

$$
\Omega_{\text{NG}}(t,q) = -\frac{2}{24} \frac{q^2}{\mathcal{H}^2} \frac{q^3}{2\pi^2} \int \frac{d^3p}{(2\pi)^3} \frac{1}{q^4} \Big[\boldsymbol{p} \cdot \boldsymbol{e}^s(\boldsymbol{q}) \cdot \boldsymbol{p} \Big]^2 \overline{I_q(p, |\boldsymbol{q}-\boldsymbol{p}|)^2} |\varphi_{|\boldsymbol{q}-\boldsymbol{p}|}(t_e)|^2 |\varphi_p(t_e)|^2 \Big| \frac{d \log \mathcal{P}_{\mathcal{R}}(p)}{d \log p} \Bigg]
$$

We have shown it only for the self-interaction term. But it **also holds when all interactions are kept!** Proof in [2411.XXXXX].

13

Summary

1

2

3

4

Non-Gaussianities in USR are not local. The exponential tail is not enough to make accurate predictions. δN does <u>not</u> capture all the physics.

Nonlinearity parameters should be taken of order 1. In this case, self-interactions dominate the loop corrections.

Perturbation theory <u>may be violated</u> depending on the parameter choices. The gravitational wave spectrum inherits this property.

Non-Gaussianities change the angular power spectrum. Scalar-induced anisotropies obey a consistency relation.

Thanks!

14