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OVERVIEW

In this talk, I will explore the effects of renormalization in the
amplitude of the inflationary spectra at scales measurable in the

cosmic microwave background.

1. Motivation and background.
Do we need to renormalise the PS?
Previous results.

2. Main tools.
Adiabatic expansion/adiabatic regularization.

3. The power spectrum.
Cosmological perturbations.
Instant transition.
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Part I

Motivation and background
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MOTIVATION AND BACKGROUND

Inflationary paradigm

It provides an elegant solution to the horizon and flatness problems, as well
as an explanation for the homogeneity and isotropy of the universe.

Inflation + Quantum Field Theory
↓

predict the generation of a nearly scale-free spectrum of
primordial scalar and tensor fluctuations.

▶ Scalar fluctuations → observed as temperature anisotropies in the CMB.
Act as the seeds for structure in the universe.

▶ Tensor fluctuations→ prediction of a spectrum of relic gravitational waves
carrying information from the earliest moments of the universe.
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MOTIVATION AND BACKGROUND

It is very important to have have firm theoretical predictions for the tensor
and scalar spectra. Can renormalization change the standard predictions?

Do we need renormalization?

⟨
ζ(τ, x)ζ(τ, x′)

⟩
=

∫
dk
k

sin k |x − x′|
k |x − x′| Pζ(k, τ),

⟨ζ(τ, x)ζ(τ, x′)⟩ it’s finite in the distributional sense.

Pζ(k, τ) goes as k−1 in the UV limit.

The correlator is divergent in the coincident limit x → x′.
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MOTIVATION AND BACKGROUND

It was suggested that renormalization results in a significant
reduction of the amplitude of the spectra at CMB scales.
(Parker, 2007; Agullo, Navarro-Salas, Olmo, Parker, 2008/2009/2010)

▶ They apply the adiabatic renormalization method.
▶ The final result was obtained by evaluating Pζ(k, τ) at the moment of
horizon crossing during inflation. Quantum-to-classical transition.

This result sparked a vigorous debate

∙ “Renormalization is not needed.”
(F. Finelli, G. Marozzi, G. P. Vacca, and G. Venturi, 2007)

∙ “We need to introduce an arbitrary scale in the adiabatic method.”
(A. Ferreiro and F. Torrenti, 2023)

∙ “The adiabatic subtractions shouldn’t be applied at super-horizon scales.”
(R. Durrer, G. Marozzi, and M. Rinaldi, 2009/2011)
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MOTIVATION AND BACKGROUND

It was suggested that renormalization results in a significant
reduction of the amplitude of the spectra at CMB scales.
(Parker, 2007; Agullo, Navarro-Salas, Olmo, Parker, 2008/2009/2010)

▶ They apply the adiabatic renormalization method.
▶ The final result was obtained by evaluating P(k, τ) at the moment of
horizon crossing during inflation. Quantum-to-classical transition.

Our claim:

∙ The adiabatic method works as it is, and should be applied at all scales.
∙ We shouldn’t evaluate the subtractions at horizon crossing. We should let
them evolve. The quantum-to-classical transition will occur dynamically.
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Part II

Framework and main tools
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THE ADIABATIC EXPANSION

The adiabatic expansion.
It is an asymptotic expansion that captures the large-k behaviour of the

modes→ it can be used for renormalization.

1. Starting point: the mode equation

φ′′
k + (ω2

k + σ)φk = 0 .

2. Assume the WKB ansatz for the field modes

φk ∼ 1√
2Ωk(τ)

e−i
∫ τ Ωk(τ

′)dτ ′
,

The function Ωk admits the following adiabatic expansion

Ωk =
∞∑

n=0
ω

(n)
k .
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THE ADIABATIC EXPANSION

3. Fix the adiabatic order of the background fields: ω is of adiabatic order
zero. σ is of adiabatic order two.

4. Insert the WKB ansatz and the adiabatic expansion in the eom and group
terms with the same adiabatic order.

5. Solve iteratively. First orders:

ω(0) = ω ,

ω(1) = ω(3) = 0 ,

ω(2) =
σ

2ω +
3
8
(ω′)2

ω3 − 1
4
ω′′

ω2 ,
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THE ADIABATIC EXPANSION

From the adiabatic expansion of the field modes, we can obtain the adiabatic
expansion of composite quantities

2|φk|2Ad ∼ (Ω−1
k )(0) + (Ω−1

k )(2) + (Ω−1
k )(4) + ...

The adiabatic expansion captures the UV behavior of modes.
↓

it removes the UV divergences by simply subtracting the adiabatic
counterterms mode-by-mode.

The number of subtractions is determined by the scaling dimension of the
observable. Two-point function:

⟨ϕ̂2⟩phys =

∫
dk
k

k3

4πa2

(
2|φk|2 − (Ω−1

k )(0) − (Ω−1
k )(2)

)
.
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ADIABATIC REGULARIZATION

Adiabatic regularization is known to be equivalent to other renormalization
methods, e.g., dimensional regularization or point-splitting (up to the

well-known renormalization ambiguities).

⟨ϕ̂2⟩1 − ⟨ϕ̂2⟩2 = c1m2 + c2R

It is compatible with locality and general covariance.

It is a powerful tool for practical cosmological applications in FRW
spacetime. Specially when a numerical analysis is required.

Note: despite it’s name, it works in any FRW background, not only when the
expansion rate of the universe is adiabatic.

11



Part III

The power spectrum of primordial perturbations
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COSMOLOGICAL PERTURBATIONS

Cosmological perturbations.

We start with the perturbed FRW metric in the longitudinal gauge

ds2 = a2[− (1 + 2Φ)dτ2 + [(1 − 2Ψ)δij + hij]dxidxj] ,
▶ The tensor fluctuations hij are chosen to satisfy the transverse-traceless
condition ∂ihij = hi

i = 0, which yields two physical polarizations h = h+,×.
▶ For the scalars, (we assume Φ = Ψ) one can define the gauge-invariant
quantity ζ

ζ = Ψ+ Hδϕ

ϕ̇
,

Our goal is to compute the coincident two-point functions of ζ and h
and renormalize them using the adiabatic regularization technique.
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COSMOLOGICAL PERTURBATIONS

It is very convenient to work with Mukhanov variables

vs = zsζ , zs = aMP
√

2ε ,
vt = zth , zt = aMP/2 ,

s ≡ scalar, t ≡tensor, ε = −Ḣ/H 2, and MP is the reduced Planck scale.

These variables are very advantageous since they allow the scalar and tensor
perturbations to be described by the same action

S =
1
2

∫
dτd3x

[
(v′)2 − (∇v)2 +

z′′
z v2

]
,

z = z (τ) contains all the information about the gravitational background.

v is suitable for quantization by via the canonical procedure.
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COSMOLOGICAL PERTURBATIONS

1. Mode expansion:

v̂ (τ, x) =
∫

d3k
(2π)3/2

[
vk(τ)ei k·xâ k + v∗k(τ)e−i k·xâ †

k

]
.

2. Vacuum state:
â k|0⟩ = 0 .

3. Mode equation:

v′′k +

(
k2 − z′′

z

)
vk = 0 .

4. Wronskian condition:
vkv′∗k − v∗k v′k = i .

We can compute now the (coincident) two-point function

⟨v2⟩ =
∫ ∞

0

dk
k Pv(k, τ) , Pv ≡ k3

2π2 |vk(τ)|2 .

Pv is the unregularized power spectrum of the Mukhanov variable.
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REGULARISED POWER SPECTRUM

⟨v2⟩ =
∫ ∞

0

dk
k Pv(k, τ) , Pv ≡ k3

2π2 |vk(τ)|2 .

The coincident two-point function is UV divergent.

It can be regularised using the adiabatic method. The regularized spectrum
is defined as

Preg
v ≡ Pv(k, τ)− Pct

v (k, τ) ,

where Pct
v contains the adiabatic counterterms

Pct
v (k, τ) = k2

4π2 +
1

8π2
z′′
z .

Subtracting Pct
v (k, τ) leads to an exact cancellation of both divergent terms.
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THE POWER SPECTRUM OF PRIMORDIAL PERTURBATIONS

For simplicity we assumed ε = −Ḣ/H2 ≈ const.

In this limit
z′′
z =

a′′

a , a ∝ τ1/2−ν ,

Note: ν is the “bessel index” that appears in the mode equations. It is related to ε

(and to the equation of state w).

We analysed two cases:

▶ The power spectrum in an inflating universe (0 ≤ ε < 1; w < −1/3).

▶ The power spectrum in a universe that:

1. Starts in an inflationary phase, described by a constant equation of state

w1 < −1/3 .

2. At τ = τ0 experiences an instant transition to a FRW universe with a growing
horizon, described by another constant

w2 > −1/3 .
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INSTANT TRANSITION

Instant transition.
The solutions for the “in” and “out” regions are given in terms of Hankel
functions with indices ν and µ, respectively. These indices are related with
w1 and w2, as follows

Figure: Credits to B. Stefanek
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UV EXPANSION

UV limit

The counterterms in the out region can be readily computed

Pct
v (k, τ) = k2

4π2 +
(µ2 − 1/4)

8π2(τ − τ̄)2 .

Let us focus first on the UV behaviour of Pv(k, τ). It is not difficult to find the
following asymptotic form

Pv(k, τ) → k2

4π2 +
(µ2 − 1/4)

8π2(τ − τ̄)2 − (µ+ ν) cos(2k (τ − τ0))

8π2γτ2
0

+O(k−2) .

The first two UV divergent terms in Pv are exactly canceled by Pct
v ,

while the oscillatory term is UV finite.
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IR EXPANSION

IR limit
After some algebra, it can be shown that the unrenormalised power spectrum
in the IR is independent of µ. It reads

Pv(k, τ) → a2H 2
0

4π2
22ν−3Γ(ν)2

Γ(3/2)2

(
ν − 1

2

)1−2ν ( k
k0

)3−2ν
,

On the other hand, the counterterms only depend on µ

Pct
v (k, τ) → a2H 2

0
8π2

(
µ− 1/2
µ+ 1/2

)
e−

(3+2µ)
(µ+1/2) (N−N0) ,

where N − N0 measures the number of e-folds after the end of inflation.
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CONCLUSION

▶ The IR counterterm spectrum rapidly decays after the end of inflation, while
Pv is independent of time.

▶ This means that Preg
v → Pv is an attractor solution in the IR that is reached

a few e-folds after the end of inflation.

▶ We can safely take the limit τ → ∞ to obtain our final answer for the IR
spectra of ζ and h that would be measured at late times

Preg
ζ (k∗,∞) ≈ 1

8π2εin

H2
∗

M2
P

≡ As ,

Preg
h (k∗,∞) ≈ 2

π2
H2

∗

M2
P

≡ At .

It gives the standard prediction for the tensor-to-scalar ratio r = At/As = 16εin .
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THANKS FOR YOUR ATTENTION
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CASE 2: INSTANT TRANSITION

Instant transition.

1. We start with an inflationary universe, described by a constant equation of
state

w1 < −1/3 .

2. At τ = τ0 (a = a0, H = H0) it experiences an instant transition to a FRW
universe with a growing horizon, described by another constant

w2 > −1/3 .

Scale factor:

a(τ)
a0

=

(τ/τ0)
2

(1+3w1) τ < τ0[
1
2 a0H0(τ − τ̄)(1 + 3w2)

] 2
(1+3w2)

τ > τ0 ,

where
τ̄

τ0
=

(w2 − w1)

(w2 + 1/3)
, a0H0τ0 =

2
(1 + 3w1)
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POWER SPECTRUM

“Bare” P in an inflating universe.
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CASE 2: INSTANT TRANSITION

The solutions for the “in” and “out” regions are given in terms of Hankel func-
tions with indices ν and µ, respectively. These indices are related with w1 and
w2, as follows

w1 =
3 + 2ν
3 − 6ν , w2 =

3 − 2µ
3 + 6µ .

The solution for the modes in the inflating in phase is (q = −kτ)

vin
k (τ) =

√
π

4kei π4 (1+2ν)√q H (1)
ν (q) ≡ fν(q)√

2k
.

In the growing horizon out phase we have

vout
k (τ) =

1√
2k

(
αk fµ(q − q̄ ) + βk f ∗µ (q − q̄ )

)
,

where |αk|2 − |βk|2 = 1.
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CASE 2: INSTANT TRANSITION

The coefficients αk and βk are determined by requiring the mode function
and its derivative to be continuous at τ0, namely

vin
k (τ0) = vout

k (τ0) , v′ in
k (τ0) = v′ out

k (τ0)

We find

αk =
1
2

[
fν(q0)f ∗1+µ(γq0) + fν−1(q0)f ∗µ (γq0)

]
,

βk =
1
2

[
fν(q0)f1+µ(γq0)− fν−1(q0)fµ(γq0)

]
.

where γ = (1 + 2µ)/(1 − 2ν) and q0 = −k τ0.

Let’s study Preg
v in the out region!
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CASE 2: UV EXPANSION

The counterterms in the out region can be readily computed

Pct
v (k, τ) = k2

4π2 +
(µ2 − 1/4)

8π2(τ − τ̄)2 .

Let us focus first on the UV behaviour of Pv(k, τ). It is not difficult to find the
following asymptotic form

Pv(k, τ) → k2

4π2 +
(µ2 − 1/4)

8π2(τ − τ̄)2 − (µ+ ν) cos(2k (τ − τ0))

8π2γτ2
0

+O(k−2) .

The first two UV divergent terms in Pv are exactly canceled by Pct
v ,

while the oscillatory term is UV finite.
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CASE 2: IR EXPANSION

In the IR limit we find αk ≈ βke−iπ(µ+ 1
2 ) at leading order, and

|βk|2 → 4ν+µ

4π2
q−2(ν+µ)

0
γ1+2µ Γ(ν)2Γ(1 + µ)2 .

After some algebra, it can be shown that the unrenormalised power spectrum
in the IR is independent of µ. It reads

Pv(k, τ) → a2H 2
0

4π2
22ν−3Γ(ν)2

Γ(3/2)2

(
ν − 1

2

)1−2ν ( k
k0

)3−2ν
,

On the other hand, the counterterms only depend on µ

Pct
v (k, τ) → a2H 2

0
8π2

(
µ− 1/2
µ+ 1/2

)
e−

(3+2µ)
(µ+1/2) (N−N0) ,

where N − N0 measures the number of e-folds after the end of inflation.
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NUMERICAL SOLUTION

We have also solved the mode equation numerically for a universe that
transitions out of inflation in a finite time to a matter domination universe.

∙ The instant transition leads to an over-excitation of UV modes.

∙ The scale-invariant UV oscillations appearing in the instant transition case
are due to the finite term that appears in the (UV expansion).

∙ The instant transition provides an excellent approximation to the full nu-
merical solution in the IR a few e-folds after inflation ends, which is the
region of interest for cosmology.
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NUMERICAL SOLUTION
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Figure: Regularized power spectrum for a universe that makes a transition from an
inflating phase with w1 = −1 (de-Sitter) to a growing horizon phase with w2 = 0
(matter). Solid lines are obtained numerically (for a transition on a timescale H−1

0 ),
while dashed lines give the instant transition approximation
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FURTHER CONCLUSIONS

We have computed the renormalized spectra of scalar and tensor perturba-
tions from inflation using adiabatic regularization.

The adiabatic counterterms must be subtracted at all times and for all scales.
As a consequence Preg

v (k, τ) = 0 for all (k, τ) in de Sitter.

We followed the evolution of the renormalized spectra through the inflation-
ary transition using an instant transition model (supported by a full numerical
solution).

The standard result for the IR spectrum is recovered just a few e-folds after in-
flation ends, while the counterterms ensure that UV divergences are canceled
at all times. Standard predictions for inflationary observables are recovered.
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FINAL REMARKS

Quantum-to-classical transition?

We can compute the “purity” of the vacuum state

γk = 4 × det
(

|vk|2 1
2 (vkv′∗k + v′kv∗k)

1
2 (vkv′∗k + v′kv∗k) |v′k|

)
= −(v ∗

k v′k − vkv′∗k )2 = 1

The determinant of the purity matrix is proportional to the Wronskian
↓

the purity is a conserved quantity.
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AN INFRARED-SAFE DEFINITION FOR THE COUNTERTERM SPECTRUM

Pct
ϕ for a free field in FLRW read:

Pct
v (k, τ) = k3

2π2

(
1

2ω − ω(2)

2ω2

)
where

ω(2) = σ + f (ω′, ω′′)

with ω2 = k2 + m2 and σ = (ξ − 1/6)R. This result gives rise to a logarithmic
IR divergence in ⟨ϕ2⟩ when the massless limit m → 0 is taken.

These IR divergences can be removed by an alternative (resummed), IR-safe
definition for the counterterm spectrum

Pct
(k, τ) = k3

2π2
1

2ω̄ ,

where ω̄2 = k2 + m2 + σ.
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