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Introduction to the adiabatic Renormalization

• UV divergences: As in the case of flat space time,
observable are characterized by divergences in the deep UV.

• New divergences: The presence of gravity led to new
divergences that are not matched by the Minkowski ones.

Vacuum choice: There is not a preferred choice of the
vacuum.

the “vacuum"-state is not anymore empty due to time dependent
background

Ak |0⟩ = 0 t−evolution−−−−−−−→ ⟨0| A†
kAk |0⟩ ≠ 0 = Nk = |βk|2



Physical request:
particles should not be created when the energy of a single particle
is larger w.r.t. the energy scale of the spacetime.

k2

a2(t) + m2 >

(
ȧ

a

)2
,

ä

a
⇒ Nk ∼ const.

the particle content should not change if the change rate of a(t) is
adiabatic.

Adiabatic vacuum:
the vacuum that minimizes the creation of particle due to the
presence of a time-dependent metric.



Scalar Field

L = 1
2
(
gµν∂µϕ∂νϕ − m2ϕ2 − ξRϕ2

)

Friedmann-Lemaître-Robertson-Walker (FLRW) metric

ds2 = dt2 − a2(t) dx2

Equation of motion:
(
2 + m2 + ξR

)
ϕ = 0

standard quantization: ϕ(x) =
∑

k
{Akfk(x) + A†

kf∗
k(x)}

A†
k and Ak creation and annihilation operators

mode function: fk = (2V )−1/2a(t)−3/2hk(t)eik·x



the rescaled mode function hk(t) satisfies the equation

ḧk + Ω2
k(t) hk = 0

formally solved by the Wentzel-Kramer-Brillouin (WKB)
approximation

hk(t) = 1√
2Wk(t)

e−i
∫

Wk(t′)dt′

inserting the WKB ansatz into the equation of motion

Wk(t)2 = Ωk(t)2 −
(

Ẅk(t)
2Wk(t) − 3Ẇk(t)2

4Wk(t)2

)



Adiabatic condition: slowly changes in time

∣∣∣ Ẇ

W 2

∣∣∣ ≪ 1

introducing an adiabatic parameter ϵ ≪ 1

∂t → ϵ∂t

solution for Wk(t) as a power series in time derivatives

Wk(t) = W
(0)
k (t) + ϵ W

(1)
k (t) + · · · + ϵn W

(n)
k (t)



Adiabatic renormalization prescription:

evaluate expectation values w.r.t. the adiabatic vacuum

mode functions are given in terms of WKB ansatz

expand up to the adiabatic order that matches energy
dimension of the operator

subtract the adiabatic term from the bare quantity



A problematic example: Axion-gauge fields
Pseudo-scalar inflaton field ϕ coupled to U(1) gauge field Aµ

L = −1
2(∇ϕ)2 − V (ϕ) − 1

4(F µν)2 − gϕ

4 F µνF̃µν

Due to the coupling with the inflaton field ϕ, quantum
fluctuations of the gauge field Aµ are amplified.

Backreaction:

ϕ̈ + 3Hϕ̇ + Vϕ = g ⟨E · B⟩

H2 = 1
3M2

p

[
ϕ̇2

2 + V (ϕ) + ⟨E2 + B2⟩
2

]
Ḣ = − 1

2M2
p

[
ϕ̇2 + 2

3 ⟨E2 + B2⟩
]

Energy Density
⟨E2 + B2⟩

2
=
∫

dkk2

(2π)2a(τ)4

[
|A′

+|2 + |A′
−|2 + k2

(
|A+|2 + |A−|2

)]
Helicity Integral ⟨E · B⟩ = −

∫
dkk3

(2π)2a(τ)4
∂

∂τ

(
|A+|2 − |A−|2

)
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The fourier mode functions A± satisfy the EOM:

d2

dτ2 A±(τ, k) +
(
k2 ∓ kgϕ′)A±(τ, k) = 0

assuming de Sitter: a(τ) = −1/(Hτ), H = const.

ξ ≡ gϕ′/(2a(τ)H) = gϕ̇/(2H) A±(τ, k) = 1√
2k

e±πξ/2W±iξ, 1
2
(−2ikτ)

• Divergences: ⟨E2+B2⟩
2 ⊃ Λ4, Λ2, log Λ,

⟨E · B⟩ ⊃ Λ2, log Λ

Λ4, Λ2 and log[Λ] UV divergences for the energy density.

Λ2 and log[Λ] UV divergences for the helicity integral.

well-behaved in the infrared
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Renormalization
For each polarization λ = ±:

AWKB
λ (k, τ) = 1√

2Ωλ(k, τ)
e−i

∫
Ωλ(k,τ ′)dτ ′

d2

dτ2 AWKB
± (τ, k) +

(
k2 ∓ gkϕ′ + m2

H2τ2

)
AWKB

± (τ, k) = 0

⇓

Ω2
λ(k, τ) = Ω̄2

λ(k, τ) + 3
4

(Ω′
λ(k, τ)

Ωλ(k, τ)

)2
− 1

2
Ω′′

λ(k, τ)
Ωλ(k, τ)

• Adiabatic condition: slowly changes in time:
∣∣∣ Ω̇

Ω2

∣∣∣ ≪ 1

ϵ ≪ 1 : ∂t → ϵ∂t

Ωk(t) = Ω(0)
k (t) + ϵ Ω(1)

k (t) + · · · + ϵn Ω(n)
k (t)



Standard adiabatic regularization: ill defined for m → 0

1
2 ⟨E2 + B2⟩ad =

∫ a(τ)Λ

0

dkk2

(2π)2a(τ)4 (· · · )n=4
ad ⊃ Λ4, Λ2, log Λ, log m

⟨E · B⟩ad = −
∫ a(τ)Λ

0

dkk3

(2π)2a(τ)4
∂

∂τ
(· · ·)n=4

ad ⊃ Λ2, log Λ, log m

The standard adiabatic renormalization correctly removes the
divergences in the UV, introducing unphysical IR
divergences.



Issues and Motivations: the need of a IR cut off

Adiabatic renormalization concerns the UV divergences

WKB is well defined for modes that feel small curvature

Good approximation for sub-horizon modes



⟨Tµν⟩ad will have the following general structure:

⟨T ⟩(n>4)
ad = H4 ∑

n>4

(
cn

(
H

m

)n−4
+ c′

n

(
H

Λ

)n−4
)

deep UV:when Λ → ∞, the higher order terms go to zero and
we can truncate the series at the fourth adiabatic order, which
is indeed the order needed to remove the UV divergences.

IR regime the IR regime produces higher order terms
involving m which are increasingly relevant for m → 0.



New adiabatic regularization

We suggest that the procedure of adiabatic regularization should
be always performed on a proper domain which excludes the IR tail
of the spectrum.

the adiabatic subtraction should be considered only up to an
IR cut-off c = βa(t)H(t).

the coefficient β, should be determined by a proper physical
prescription.



1
2 ⟨E2 + B2⟩ad =

∫ a(τ)Λ

βa(τ)H

dkk2

(2π)2a(τ)4 (· · · )n=4
ad

⟨E · B⟩ad = −
∫ a(τ)Λ

βa(τ)H

dkk3

(2π)2a(τ)4
∂

∂τ
(· · ·)n=4

ad

1
2 ⟨E2 + B2⟩c=βHa(τ)

ad = Λ4

8π2 + H2Λ2ξ2

8π2 + 3H4ξ2(5ξ2 − 1) log (2Λ/H)
16π2

− β4H4

8π2 − β2H4ξ2

8π2 − 3H4ξ2(5ξ2 − 1) log (2β)
16π2

⟨E · B⟩c=βHa(τ)
ad = − H2Λ2ξ

8π2 − 3H4ξ(5ξ2 − 1) log (2Λ/H)
8π2

+ β2H4ξ

8π2 + 3H4ξ(5ξ2 − 1) log (2β)
8π2



How to fix the scheme
Conformal anomaly

• In the conformal limit, a proper renormalization scheme should
provide the conformal anomaly induced by quantum effects.

• When at the classical level T µ
µ = 0

⟨T µ
µ⟩phys = −⟨T µ

µ⟩reg

⟨T µ
µ⟩reg is given by the particular renormalization method

applied.



The two helicities of the mode functions A± are equivalent to
two conformally coupled massless scalar fields for ξ = 0

d2

dτ2 A± +
(

k2 ± 2kξ

τ
+ m2

H2τ2

)
A± = 0 →

(
d2

dτ2 + k2
)

A± = 0

lim
ξ→0, m→0

⟨T 0
0⟩ad = lim

ξ→0, m→0

⟨E2 + B2⟩c=βHa(τ)
ad

2 = −β4H4

8π2

this term should reproduce the expected value of the anomaly

β4H4

8π2 = H4

480π2 =⇒ β = 1√
2 × 151/4 ≈ 0.359



Summary

Adiabatic renormalization is a powerful renormalization
scheme to regularize UV divergences.

Should be truncated up to an IR cut-off proportional to the
horizon size.

This cut-off should be fixed by a proper physical prescription.



Thank you for the
attention


