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Quantum Fluctuations in Cosmology

ℏ ≠ 0



ℏ ≠ 0

∆𝑥 ∆𝑝 ≥ ൗℏ
2

Due to Uncertainty Principle 

quantum vacuum is NOT nothing!

Simulation credit: Derek Leinweber

Quantum Vacuum

Simulation credit: Derek Leinweber

But, a vast ocean made of

Virtual particles

vacuum vacuum



Quantum Vacuum Particle Production
Virtual particles Actual particles

background field

Background field can upgrade them into actual particles!
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Examples of such BG fields:

1) Electric Field   Schwinger effect

eE 𝜆𝑐omp = mc2Work of the Lorentz force 
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J. Schwinger (1951)
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Quantum Vacuum Particle Production
Virtual particles Actual particles

background field

Background field can upgrade them into actual particles!

Examples of such BG fields:

1) Electric Field   Schwinger effect

eE 𝜆𝑐omp = mc2Work of the Lorentz force 

over Comptom wavelength

E =
𝑚𝑒

2 c3

𝑒ℏ
=1018

J. Schwinger (1951)

𝐸

e+e−

Rest energy of charged particle

ൗ𝑉
𝑚The Electric field that can create electron pairs 



What about

Schwinger Effect in Early Universe? 

Schwinger effect in scalar QED in 4d de Sitter

▪ T. Kobayashi, N. Afshordi  2014

ii) Naturally coupled to gauge fields

i) a natural candidate for the inflaton field

How about  Axion-inflation?!



▪ K. Lozanov, A. M., E. Komatsu 2018

▪ A. M., E. Komatsu 2019

▪ V. Domcke, Y. Ema, K. Mukaida, R. Sato 2019

▪ L. Mirzagholi, A. M., K. Lozanov  2019

▪ ….

E. KomatsuK. Lozanov
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Schwinger effect in axion-inflation

What about

Schwinger Effect in Early Universe? 

Schwinger effect in scalar QED in 4d de Sitter

▪ T. Kobayashi, N. Afshordi  2014

ii) Naturally coupled to gauge fields

i) a natural candidate for the inflaton field

How about  Axion-inflation?!

▪ E. Komatsu 2022  



Quantum Vacuum Particle Production
Virtual particles Actual particles

background field

Background field can upgrade them into actual particles!

Examples of such BG fields:

2) Gravitational

S. Hawking (1974)

one  particle fall into the BH, while the other escapes…

Power BH emitted is

Horizon
Hawking radiation

P =
𝜋𝑐3𝑀𝑝𝑙
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Quantum Vacuum Particle Production
Virtual particles Actual particles

background field

Background field can upgrade them into actual particles!

Examples of such BG fields:

1) Electric Field   Schwinger effect

2) Gravitational Hawking radiation

 or  expansion of the Universe!



Flat Space:

Expanding space:

Time

S
p
a
ce

Particle

 Production

Vacuum

E. Schrödinger (1939) 

Shocked by his discovery, 

Schrödinger found it 

an alarming phenomenon!

Expanding Universe Produces Particles!



Cosmic Perturbations

Exponential expansion turns initial 

quantum vacuum fluctuations into

𝑎𝑖

actual cosmic perturbations!

We are the product of 

quantum fluctuations in the

 very early universe!
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Cosmological Gravitational Particle Production

(CGPP)

𝑆𝑀
𝐺𝑅

Einstein Gravity

Φ

L. Parker (1966) 

The expansion of the Universe creates pair production in FRW geometry. 

But conformal fields in 4d will not be produced since FRW is conformally flat! 



In cosmological background

Consider a scalar field 

The field equation is Φ𝑘′′+𝜔𝑘
2 𝜏 Φ𝑘 = 0

𝜔𝑘
2 𝜏 = 𝑘2 + 𝑎2 𝜏 (𝑚2+

𝑅(𝜏)

6
)effective frequency 

𝑔𝜇𝜈 = 𝑎2 𝜏 diag(−1, 1, 1, 1)

Scalar Field in Expanding Universe
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2 𝜏 = 𝑘2 + 𝑎2 𝜏 (𝑚2+

𝑅(𝜏)

6
)

𝑔𝜇𝜈 = 𝑎2 𝜏 diag(−1, 1, 1, 1)

Scalar Field in Expanding Universe

Plot credit: Kolb & Long      Reviews of Modern Physics 2023

An example of Cosmological Gravitational 

Particle Production (CGPP)

is Hubble scale at the end of inflation𝐻𝑒



Plot credit: Kolb & Long Reviews of Modern Physics 2023

Spinning Fields in Expanding Universe



Plot credit: Kolb & Long Reviews of Modern Physics 2023

Spinning Fields in Expanding Universe

Massless

L. Parker (1966) 

Conformal fields in FRW will not be produced

 since FRW is conformally flat! 



Plot credit: Kolb & Long Reviews of Modern Physics 2023

Spinning Fields in Expanding Universe

Massless

L. Parker (1966) 

Conformal fields in FRW will not be produced

 since FRW is conformally flat! 

No CGPP for massless fermions!

(conformal symmetry)



In cosmological background

Consider spin 
1

2
 massless fermions  

Spin connectionSpinor covariant derivative

The field equation of fermion is 

Effect of gravity

Fermions in Expanding Universe

𝑔𝜇𝜈 = 𝑎2 𝜏 diag(−1, 1, 1, 1)



In cosmological background

Consider spin 
1

2
 massless fermions  

Spin connectionSpinor covariant derivative

The field equation of fermion is 

Effect of gravity

The effect of FRW gravity (conformally flat geometry) can be absorbed as

Fermions in Expanding Universe

𝑔𝜇𝜈 = 𝑎2 𝜏 diag(−1, 1, 1, 1)

canonically  renormalized field lives in flat space! 



Breaking the conformal symmetry of Weyl fermions by interactions, e.g.

Inflaton field,

o    Couple your Weyl fermion with       Standard Model,

                                                              Dark sector coupled to thermal bath

   
o    make the fermion massive to produce them gravitationally! (CGPP)

How to Create Fermions in Expanding Universe?

(dilatation transformation)
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Gravitational Particle Production

Mechanisms

Φ𝑆𝑀
𝐺𝑅

Einstein Gravity
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Relic density by CGPP 
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ℎ𝐿 ≠ ℎ𝑅

∇𝜇𝐽5
𝜇

=
𝑁𝐿 − 𝑁𝑅

16𝜋2
𝑅 ෨𝑅(global) Gravitational anomaly 

Chiral fermions

Parity violation in inflation



Gravitational Particle Production Mechanisms 

Clery et. al. 2022 
Bernal, et. al. 2018

Kolb & Long 2017
I) 

(CGPP)

II) 

M> 1013 𝐺𝑒𝑉

M. Garny, et al 2016

𝑇𝑟𝑒ℎ > 1013 𝐺𝑒𝑉

What makes Chiral Gravitational Waves?

ℒ𝑒𝑓𝑓 =
1

Λ
𝜑𝑅 ෨𝑅

ℒ𝑒𝑓𝑓 =
1

Λ
𝜑𝐹 ෨𝐹

Alexander, Peskin, Sheikh-Jabbari 2006

A.M. 2014

1) Chern-Simons Gravity

2) Non-Abelian Gauge fields in axion-inflation

ℎ𝑅       ≠  ℎ𝐿

To generate circularly polarized GWs, we need Parity violation in inflation. 

Two possible models are

Right-handed GW

Left-handed GW

Axion-inflation is a generic setting for leptogenesis 
(All the Sakharov conditions are satisfied)

Matter Asymmetry by Gravitational Anomaly: 𝑅 ෨𝑅 ≠ 0!

Alexander, McDonough, Spergel 2018

A.M. 2014 & 2016

Adshead, Long, Sfakianakis  2017
Caldwell, Devulder 2017

A.M., Noorbala, Sheikh-Jabbari 2012

Kamada, Kume, Yamada, Yokoyama 2019

3) U(1) Gauge fields in axion-inflation

Papageorgiou, Peloso  2017

(Chiral Gauge Field              Chiral GWs)



Gravitational Particle Production Mechanisms 

Clery et. al. 2022 
Bernal, et. al. 2018

Kolb & Long 2017
I) 

(CGPP)

II) 

M> 1013 𝐺𝑒𝑉

M. Garny, et al 2016

𝑇𝑟𝑒ℎ > 1013 𝐺𝑒𝑉

•  Non-Abelian Gauge fields in axion-inflation

Axion-inflation is a generic setting for lepto/Baryogenesis 
(All the Sakharov conditions are satisfied)

Matter Asymmetrey by Chiral Anomaly: 𝐹 ෨𝐹 ≠ 0!

A.M. 2019

Right-handed 𝐴𝜇

Left-handed 𝐴𝜇

𝐴𝜇

𝑚𝜈
A.M. 2020, 2021

A.M. 2014

• U(1) Gauge fields in axion-inflation

Domcke, Harling, Morgante, Mukaida 2019

Domcke, Kamada, Mukaida, Schmitz, Yamada 2020



Gravitational Particle Production Mechanisms 

A.M. & Kopp 2024
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A.M. 2014 & 2016

Clery et. al. 2022 
Bernal, et. al. 2018

Kolb & Long 2017

Parity violation
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(CGPP)

II) 

III) 

IV) 

M> 1013 𝐺𝑒𝑉

M. Garny, et al 2016

𝑇𝑟𝑒ℎ > 1013 𝐺𝑒𝑉

ℎ𝐿 ≠ ℎ𝑅

What does Unpolarized Gravitational Waves do!? 
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a stochastic cosmic perturbations
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In a nutshell it is the production of Weyl fermions by 

a stochastic cosmic perturbations

As the lowest hanging fruit of this mechanism, consider:

 unpolarized stochastic background of GWs 

with broken power-law spectrum          in radiation ear
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Plot credit: Ellis et. Al. 2020
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The graviton–fermion Interaction

Cosmological background with Gravitational Waves transverse-traceless

Consider spin 
1

2
 Weyl fermions  

Free massless fermions can be written as 



The graviton–fermion Interaction

Cosmological background with Gravitational Waves

Cubic vertex

transverse-traceless

Quartic vertex

Consider spin 
1

2
 Weyl fermions  

Free massless fermions can be written as 



The graviton–fermion Interaction

We use In-In formalism to compute the energy density of Weyl fermions 

Expectation value of an arbitrary operator in In-In formalism

Interaction Hamiltonian 



The graviton–fermion Interaction

We use In-In formalism to compute the energy density of Weyl fermions 

Expectation value of an arbitrary operator in In-In formalism

Interaction Hamiltonian 

Energy density of Weyl fermions 

𝜌𝜓
𝜌𝜓



The graviton–fermion Interaction

We use In-In formalism to compute the energy density of Weyl fermions 

Diagrammatically we have

Energy density of Weyl fermions 

𝜌𝜓 𝜌𝜓

In-In computation of fermion energy



The graviton–fermion Interaction

We use In-In formalism to compute the energy density of Weyl fermions 

Diagrammatically we have

Energy density of Weyl fermions 

𝜌𝜓 𝜌𝜓

In-In computation of fermion energy



The graviton–fermion Interaction

We use In-In formalism to compute the energy density of Weyl fermions 

Diagrammatically we have

Energy density of Weyl fermions 

𝜌𝜓 𝜌𝜓

In-In computation of fermion energy



The graviton–fermion Interaction

We use In-In formalism to compute the energy density of Weyl fermions 

Diagrammatically we have

Energy density of Weyl fermions 

𝜌𝜓 𝜌𝜓

In-In computation of fermion energy

Vanishes for 

unpolarized GWs

=0!



The graviton–fermion Interaction

We use In-In formalism to compute the energy density of Weyl fermions 

Diagrammatically we have

Energy density of Weyl fermions 

𝜌𝜓 𝜌𝜓

In-In computation of fermion energy

Vanishes for 

unpolarized GWs

=0!



GW-induced Freeze-in

The energy density of Weyl fermions 

Unequal time power spectrum of GWs

It acts like radiation 

It depends on the degree of temporal coherency of
 GWs background

Fully coherent

Fully incoherent



Phenomenological Model for 
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Broken Power-law Spectrum
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GW-induced Freeze-in

The energy density of Weyl fermions 
Unequal time power spectrum of GWs

It acts like radiation 

Final result



GW-induced Freeze-in & Dark Matter

Fermion eventually becomes massive with mass M

(effectively) massless during production



Parameter space of GW-induced freeze-in of fermion 
A.M. & Kopp 2024



Parameter space of GW-induced freeze-in of fermion 
A.M. & Kopp 2024



Gravitational Waves Spectrum

109



Gravitational Waves Spectrum

109

(kHz-GHz)

𝐟𝐩𝐞𝐚𝐤 ∈
GW-induced freeze-in mechanism requires a

 GWs spectrum with peak frequency



Summary

Cosmic Perturbations (like GWs) naturally break the conformal 

symmetry of Weyl Fermions in Cosmology

It leads to a new mechanism for dark matter production in 

early universe, i.e. GW-induced freeze-in of fermionic dark matter.

Gravity and Quantum Effects in Cosmology can still surprise us:

We discussed an effect that is zero at tree level and non-zero at 1-

loop in cosmic perturbations!



Questions?!
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