ROYAL SOCIETY

Weyl Fermion Creation by Cosmological Gravitational Wave Background at 1-loop!

Azadeh Malek-Nejad King's College London

w/ Joachim Kopp arXiv:2405.09723 arXiv:2406.01534

Looping in the Primordial Universe @ CERN

Oct-Nov 2024

1) Quantum Fluctuations in Cosmology

2) Gravitational Particle Production

w/ Joachim Kopp

arXiv:2405.09723 arXiv:2406.01534

4) Outlook

Quantum Fluctuations in Cosmology

Quantum Vacuum $\hbar \neq 0$

Due to Uncertainty Principle

 $\Delta x \, \Delta p \geq \frac{\hbar}{2}$

quantum vacuum is NOT nothing! But, a vast ocean made of

Virtual particles

VACUUM

 $\langle J \rangle = 0$

 $\langle J \rangle \neq 0$

J. Schwinger (1951)

What about Schwinger Effect in Early Universe?

Schwinger effect in scalar QED in 4d de Sitter

T. Kobayashi, N. Afshordi 2014

How about Axion-inflation ?!

i) a natural candidate for the inflaton fieldii) Naturally coupled to gauge fields

what about Schwinger Effect in Early Universe?

Schwinger effect in scalar QED in 4d de Sitter

T. Kobayashi, N. Afshordi 2014

How about Axion-inflation?!

i) a natural candidate for the inflaton field ii) Naturally coupled to gauge fields

Schwinger effect in axion-inflation

- E. Komatsu
- K. Lozanov, A. M., E. Komatsu 2018
- **A. M**., E. Komatsu **2019**
- V. Domcke, Y. Ema, K. Mukaida, R. Sato 2019
- L. Mirzagholi, A. M., K. Lozanov 2019
-
- Many many more

What about Schwinger Effect in Early Universe?

Schwinger effect in scalar QED in 4d de Sitter

T. Kobayashi, N. Afshordi 2014

How about Axion-inflation ?!

i) a natural candidate for the inflaton fieldii) Naturally coupled to gauge fields

Schwinger effect in axion-inflation

- K. Lozanov, A. M., E. Komatsu 2018
- A. M., E. Komatsu 2019
- V. Domcke, Y. Ema, K. Mukaida, R. Sato 2019
- L. Mirzagholi, A. M., K. Lozanov 2019
- **•** ...

E. Komatsu 2022 nature reviews physics

New physics from the polarized light of the cosmic microwave background

Quantum VacuumParticle ProductionVirtual particlesActual particlesImage: Description of the particle of

Examples of such BG fields: 2) Gravitational

Hawking radiation

Horizon

one particle fall into the BH, while the other escapes...

Power BH emitted is

$$P = \frac{\pi c^3 M_{pl}^4}{240} \frac{1}{M^2}$$

S. Hawking (1974)

or expansion of the Universe!

Expanding Universe Produces Particles!

Flat Space:

Vacuum

Expanding space:

Space

• (()

E. Schrödinger (1939)

Shocked by his discovery, Schrödinger found it an alarming phenomenon!

Particle Production

Cosmic Perturbations Primordial

Exponential expansion turns initial quantum vacuum fluctuations into

actual cosmic perturbations!

We are the product of quantum fluctuations in the very early universe!

Cosmological Gravitational Particle Production (CGPP)

The expansion of the Universe creates pair production in FRW geometry. But conformal fields in 4d will not be produced since FRW is conformally flat!

Scalar Field in Expanding Universe

Consider a scalar field $\mathcal{L} = \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \Phi \nabla_{\nu} \Phi - \frac{1}{2} m^2 \Phi^2$

In cosmological background $g_{\mu\nu} = a^2(\tau) \text{diag}(-1, 1, 1, 1)$

The field equation is

effective frequency
$$\omega_k^2(\tau) = k^2 + a^2(\tau)(m^2 + \frac{R(\tau)}{6})$$

Scalar Field in Expanding Universe

Consider a scalar field $\mathcal{L} = \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \Phi \nabla_{\nu} \Phi - \frac{1}{2} m^2 \Phi^2$

In cosmological background $g_{\mu\nu} = a^2(\tau) \text{diag}(-1, 1, 1, 1)$

The field equation is

effective frequency
$$\omega_k^2(\tau) = k^2 + a^2(\tau)(m^2 + \frac{R(\tau)}{6})$$

Scalar field can feel the expansion of Universe

Scalar Field in Expanding Universe

Consider a scalar field

 $g_{\mu\nu} = a^2(\tau) \text{diag}(-1, 1, 1, 1)$ In cosmological background

$$\Phi_k'' + \omega_k^2(\tau) \Phi_k = 0$$

$$\omega_k^2(\tau) = k^2 + a^2(\tau)(m^2 + \frac{R(\tau)}{6})$$

 $\mathcal{L} = \frac{1}{2} \mathrm{g}^{\mu\nu} \nabla_{\!\!\mu} \Phi \nabla_{\!\!\nu} \Phi - \frac{1}{2} m^2 \Phi^2$

An example of Cosmological Gravitational Particle Production (CGPP)

Plot credit: Kolb & Long

Reviews of Modern Physics 2023

Spinning Fields in Expanding Universe

Spinning Fields in Expanding Universe

Spinning Fields in Expanding Universe

L. Parker (1966)

Conformal fields in FRW will not be produced since FRW is conformally flat!

No CGPP for massless fermions! (conformal symmetry)

Fermions in Expanding Universe

Consider spin $\frac{1}{2}$ massless fermions $\mathcal{L}_{\psi} = i\psi^{\dagger} \gamma^{\mu} \mathcal{D}_{\mu} \psi$ Spinor covariant derivative $\mathcal{D}_{\mu}^{\dagger} = \nabla_{\mu} - \omega_{\mu}$ Spin connection

In cosmological background

The field equation of fermion is

$$g_{\mu\nu} = a^{2}(\tau) \operatorname{diag}(-1, 1, 1, 1)$$

$$\left(\gamma^{0}(\partial_{0} + \frac{3}{2}H) + \frac{1}{a}\gamma^{i}\partial_{i}\right)\Psi = 0.$$
Effect of gravity

Fermions in Expanding Universe

Consider spin $\frac{1}{2}$ massless fermions $\mathcal{L}_{\psi} = i\psi^{\dagger} \gamma^{\mu} \mathcal{D}_{\mu} \psi$ Spinor covariant derivative $\mathcal{D}_{\mu}^{\dagger} = \nabla_{\mu} - \omega_{\mu}$ Spin connection

In cosmological background

The field equation of fermion is

$$g_{\mu\nu} = a^2(\tau) \operatorname{diag}(-1, 1, 1, 1)$$
$$\left(\gamma^0(\partial_0 + \frac{3}{2}H) + \frac{1}{a}\gamma^i\partial_i\right)\Psi = 0.$$

Effect of gravity

The effect of FRW gravity (conformally flat geometry) can be absorbed as $\Psi\equiv a^{3/2}\psi,$

canonically renormalized field lives in flat space!

How to Create Fermions in Expanding Universe?

Breaking the conformal symmetry of Weyl fermions by interactions, e.g.

(dilatation transformation)

- Couple your Weyl fermion with
 Couple your Weyl fermion with
 Dark sector coupled to thermal bath
- o make the fermion massive to produce them gravitationally! (CGPP)

How to Create Fermions in Expanding Universe?

Breaking the conformal symmetry of Weyl fermions by interactions, e.g.

(dilatation transformation)

- Couple your Weyl fermion with
 Couple your Weyl fermion with
 Dark sector coupled to thermal bath
- make the fermion massive to produce them gravitationally! (CGPP)

Is that the best Gravity can do to produce fermions!?

How to Create Fermions in Expanding Universe?

Breaking the conformal symmetry of Weyl fermions by interactions, e.g.

(dilatation transformation)

- Couple your Weyl fermion with
 Couple your Weyl fermion with
 Dark sector coupled to thermal bath
- make the fermion massive to produce them gravitationally! (CGPP)

Is that the best Gravity can do to produce fermions!? N_{O}

Production Mechanism	Underlying Physics	Conditions	
Cosmological Gravitational	Cosmic expansion	super-massive fields	Kolb & Long 2017
Particle Production (CGPP))	$M > 10^{13} \; GeV$	

Relic density by CGPP

I)

$$\frac{\rho_{\Psi,0}^{\rm CGPP}}{\rho_{\rm DM,0}} \sim 7 \times \left(\frac{M}{10^{11} {\rm GeV}}\right)^2 \left(\frac{T_{\rm reh}}{10^9 {\rm GeV}}\right),$$

Matter Asymmetry by Gravitational Anomaly: $\langle R\tilde{R} \rangle \neq 0!$

What makes Chiral Gravitational Waves?

To generate circularly polarized GWs, we need **Parity violation** in inflation. Two possible models are

1) Chern-Simons Gravity $\mathcal{L}_{eff} = \frac{1}{\Lambda} \varphi R \tilde{R}$ Alexander, Peskin, Sheikh-Jabbari 2006

2) Non-Abelian Gauge fields in axion-inflation

A.M., Noorbala, Sheikh-Jabbari 2012 A.M. 2014 & 2016 Caldwell, Devulder 2017 Adshead, Long, Sfakianakis 2017 Alexander, McDonough, Spergel 2018 Kamada, Kume, Yamada, Yokoyama 2019

3) U(1) Gauge fields in axion-inflation

Left-handed GW Right-handed GW $\mathcal{L}_{eff} = \frac{1}{\Lambda} \varphi F \tilde{F}$ (Chiral Gauge Field Chiral Gws) Axion-inflation is a generic setting for leptogenesis (All the Sakharov conditions are satisfied) **A.M.** 2014

Matter Asymmetrey by Chiral Anomaly: $\langle F\tilde{F} \rangle \neq 0!$

Axion-inflation is a generic setting for lepto/Baryogenesis (All the Sakharov conditions are satisfied) A.M. 2014

• Non-Abelian Gauge fields in axion-inflation

A.M. 2019 **A.M.** 2020, 2021 helation C M B Modern Interior Interior Interior Control Co

• U(1) Gauge fields in axion-inflation

Domcke, Harling, Morgante, Mukaida 2019 Domcke, Kamada, Mukaida, Schmitz, Yamada 2020

 $\nabla_{\mu}J^{\mu}_{\kappa}$

what does Unpolarized Gravitational waves do!?

Gravitational Wave-induced Freeze-in

In a nutshell it is the production of Weyl fermions by a stochastic cosmic perturbations Based on A.M. & Kopp 2024 arXiv:2405.09723 arXiv:2406.01534

Gravitational Wave-induced Freeze-in

In a nutshell it is the production of Weyl fermions by a stochastic cosmic perturbations

Based on A.M. & Kopp 2024 arXiv:2405.09723 arXiv:2406.01534

As the lowest hanging fruit of this mechanism, consider: unpolarized stochastic background of GWs with broken power-law spectrum Ω_{GW} in radiation ear

Gravitational Wave-induced Freeze-in

In a nutshell it is the production of Weyl fermions by a stochastic cosmic perturbations

Based on A.M. & Kopp 2024 arXiv:2405.09723 arXiv:2406.01534

As the lowest hanging fruit of this mechanism, consider: unpolarized stochastic background of GWs with broken power-law spectrum Ω_{GW} in radiation ear

Cosmological background with Gravitational Waves

 $ds^{2} = -dt^{2} + a^{2}(t)\,\hat{g}_{ij}\,dx_{i}dx_{j},$

Consider spin $\frac{1}{2}$ Weyl fermions

$$\hat{g}_{ij} = \left(\delta_{ij} + h_{ij} + \frac{1}{2}h_{ik}h_{jk} + \dots\right)$$

$$\mathcal{L}_{\psi} = i\psi_{D}^{\dagger}\gamma^{\mu}\mathcal{D}_{\mu}\psi_{D},$$
s $\Psi \equiv a^{3/2}\psi, \stackrel{\mathcal{D}_{oes}}{\overset{\mathcal{D}_{oes}}{\overset{\mathcal{H}_{of}}{\overset{\mathcal{H}_{oes}}{\overset{\mathcal{H}_{os}}}{\overset{\mathcal{H}_{os}}{\overset{\mathcal{H}_{os}}}{\overset{\mathcal{$

transverse-traceless

Free massless fermions can be written as $\Psi \equiv a^{3/2} \psi$,

We use In-In formalism to compute the energy density of Weyl fermions

$$\mathcal{L}_{\rm int}^{(1)} = -\frac{i}{2a^4} h_{ij} \bar{\Psi}_D \gamma^i \overleftrightarrow{\partial}_j \Psi_D.$$

$$\mathcal{L}_{\rm int}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

Expectation value of an arbitrary operator in In-In formalism

$$\langle Q(t) \rangle = \left\langle \bar{\mathrm{T}} \exp\left[i \int_{t_i^-}^t dt'' H_{\mathrm{int}}(t'')\right] Q_I(t) \, \mathrm{T} \exp\left[-i \int_{t_i^+}^t dt' H_{\mathrm{int}}(t')\right] \right\rangle,$$

$$\text{Interaction Hamiltonian} \qquad H_{\mathrm{int}}(t) = -\int d^3x \, a^3(t) \, \mathcal{L}_{\mathrm{int}}(t, \mathbf{x}),$$

We use In-In formalism to compute the energy density of Weyl fermions

$$\mathcal{L}_{\text{int}}^{(1)} = -\frac{i}{2a^4} h_{ij} \bar{\Psi}_D \gamma^i \overleftrightarrow{\partial}_j \Psi_D.$$
Energy density of Weyl fermions
$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

Expectation value of an arbitrary operator in In-In formalism

$$\begin{split} \left< \rho_{\psi} \right> &= \left< \bar{\mathrm{T}} \exp\left[i \int_{t_{i}^{-}}^{t} dt'' \, H_{\mathrm{int}}(t'') \right] \rho_{\psi}(t) \, \mathrm{T} \exp\left[-i \int_{t_{i}^{+}}^{t} dt' \, H_{\mathrm{int}}(t') \right] \right>, \\ \text{Interaction Hamiltonian} \qquad H_{\mathrm{int}}(t) &= -\int d^{3}x \, a^{3}(t) \, \mathcal{L}_{\mathrm{int}}(t, \mathbf{x}), \end{split}$$

We use In-In formalism to compute the energy density of Weyl fermions

$$\mathcal{L}_{\rm int}^{(1)} = -\frac{i}{2a^4} h_{ij} \bar{\Psi}_D \gamma^i \overleftrightarrow{\partial}_j \Psi_D.$$

$$\mathcal{L}_{\rm int}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

Energy density of Weyl fermions $\rho_{\psi}(\tau, \mathbf{x}) = T_{\mu\nu}n^{\mu}n^{\nu} = \frac{i}{a^{4}}\Psi^{\dagger}\overleftrightarrow{\partial_{\tau}}\Psi - \mathcal{L}_{\psi},$ In-In computation of fermion energy $\langle \rho_{\psi} \rangle = \left\langle \bar{\mathrm{T}}\exp\left[i\int_{t^{-}}^{t}dt''H_{\mathrm{int}}(t'')\right] \rho_{\psi} \mathrm{T}\exp\left[-i\int_{t^{+}}^{t}dt'H_{\mathrm{int}}(t')\right] \right\rangle,$

We use In-In formalism to compute the energy density of Weyl fermions

$$\mathcal{L}_{\rm int}^{(1)} = -\frac{i}{2a^4} h_{ij} \bar{\Psi}_D \gamma^i \overleftrightarrow{\partial}_j \Psi_D.$$

$$\mathcal{L}_{\rm int}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

Energy density of Weyl fermions $\rho_{\psi}(\tau, \mathbf{x}) = T_{\mu\nu}n^{\mu}n^{\nu} = \frac{i}{a^{4}}\Psi^{\dagger}\partial_{\tau}^{\leftrightarrow}\Psi - \mathcal{L}_{\psi},$ In-In computation of fermion energy $\langle \rho_{\psi} \rangle = \left\langle \bar{\mathrm{T}} \exp \left[i \int_{t_{\tau}}^{t} dt'' H_{\mathrm{int}}(t'') \right] \rho_{\psi} \mathrm{T} \exp \left[-i \int_{t_{\tau}}^{t} dt' H_{\mathrm{int}}(t') \right] \right\rangle,$

We use In-In formalism to compute the energy density of Weyl fermions

$$\mathcal{L}_{\text{int}}^{(1)} = -\frac{i}{2a^4} h_{ij} \bar{\Psi}_D \gamma^i \overleftrightarrow{\partial}_j \Psi_D.$$
Energy density of Weyl fermions
$$\rho_{\psi}(\tau, \mathbf{x}) = T_{\mu\nu} n^{\mu} n^{\nu} = \frac{i}{a^4} \Psi^{\dagger} \overleftrightarrow{\partial}_{\tau} \Psi - \mathcal{L}_{\psi},$$
In-In computation of fermion energy
$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

We use In-In formalism to compute the energy density of Weyl fermions

$$\mathcal{L}_{\text{int}}^{(1)} = -\frac{i}{2a^4} h_{ij} \bar{\Psi}_D \gamma^i \overleftrightarrow{\partial}_j \Psi_D.$$
Energy density of Weyl fermions
$$\rho_{\psi}(\tau, \mathbf{x}) = T_{\mu\nu} n^{\mu} n^{\nu} = \frac{i}{a^4} \Psi^{\dagger} \overleftrightarrow{\partial}_{\tau} \Psi - \mathcal{L}_{\psi},$$
In-In computation of fermion energy
$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

$$\mathcal{L}_{\text{int}}^{(2)} = -\frac{i}{16a^3} \mathbf{e}^{\mu}_{\ \alpha} h_{ij} \partial_{\mu} h_{ik} \bar{\Psi}_D \Gamma^{\alpha j k} \Psi_D,$$

We use In-In formalism to compute the energy density of Weyl fermions

$$\mathcal{L}_{int}^{(1)} = -\frac{i}{2a^4}h_{ij}\bar{\Psi}_D\gamma^i\overleftrightarrow{\partial}_j\Psi_D.$$
Energy density of Weyl fermions

$$\rho_{\psi}(\tau, \mathbf{x}) = T_{\mu\nu}n^{\mu}n^{\nu} = \frac{i}{a^4}\Psi^{\dagger}\overleftrightarrow{\partial}_{\tau}\Psi - \mathcal{L}_{\psi},$$
In-In computation of fermion energy

$$\langle \rho_{\psi} \rangle = \langle \bar{\tau}\exp\left[i\int_{t_{\tau}}^{t}dt''H_{int}(t'')\right]P\psi \operatorname{Texp}\left[-i\int_{t_{\tau}}^{t}dt'H_{int}(t')\right]\rangle.$$
Diagrammatically we have
vanishes for
upolarized GWS

$$\mathcal{L}_{int}^{(0)} = 0!$$

GW-induced Freeze-in

The energy density of Weyl fermions

lt

$$\begin{split} \langle \rho_{\psi}(\tau) \rangle &= \frac{1}{4\pi} \frac{1}{a^{4}(\tau)} \int_{\tau_{i}^{+}}^{\tau} d\tau' \int_{\tau_{i}^{-}}^{\tau} d\tau'' \int q^{2} dq \left\langle \mathbf{h}_{q}(\tau'') \mathbf{h}_{q}^{*}(\tau') \right\rangle \int k^{4} dk \int d\theta \, \sin^{3} \theta \, e^{i(k+\omega)(\tau'-\tau'')} \\ &\times (k+\omega) \Big[2 - \frac{\sin^{2} \theta((\omega+k)^{2}+q^{2})}{2\omega(\omega+k-q\cos\theta)} \Big] + c.c. \, . \\ & \text{Unequal time power spectrum of } \mathcal{G} \text{Ws} \\ \text{acts like radiation} \quad \langle P_{\psi}(\tau) \rangle &= \frac{1}{3} \langle \rho_{\psi}(\tau) \rangle \propto \frac{1}{a^{4}(\tau)}. \end{split}$$

It depends on the degree of temporal coherency of GWs background

$$\langle \mathbf{h}_q^*(\tau'')\mathbf{h}_q(\tau')\rangle = \gamma_q (|\tau'-\tau''|) \sqrt{\langle |\mathbf{h}_q(\tau')|^2 \rangle \langle |\mathbf{h}_q(\tau'')|^2 \rangle},$$

Fully incoherent

$$\gamma_q(|\tau'-\tau''|) = \Delta\eta\,\delta(\tau'-\tau''),$$

 $\gamma_q(| au'- au''|)=1$. Fully coherent

Phenomenological Model for Ω_{GW}

Broken Power-law Spectrum

GW-induced Freeze-in

The energy density of Weyl fermions

$$\langle \rho_{\psi}(\tau) \rangle = \frac{1}{4\pi} \frac{1}{a^{4}(\tau)} \int_{\tau_{i}^{+}}^{\tau} d\tau' \int_{\tau_{i}^{-}}^{\tau} d\tau'' \int q^{2} dq \left\langle h_{q}(\tau'')h_{q}^{*}(\tau') \right\rangle \int k^{4} dk \int d\theta \sin^{3} \theta \, e^{i(k+\omega)(\tau'-\tau'')} \\ \times (k+\omega) \Big[2 - \frac{\sin^{2} \theta((\omega+k)^{2}+q^{2})}{2\omega(\omega+k-q\cos\theta)} \Big] + c.c. .$$

It acts like radiation $\langle P_{\psi}(\tau) \rangle = \frac{1}{3} \langle \rho_{\psi}(\tau) \rangle \propto \frac{1}{a^4(\tau)}.$

It depends on the degree of temporal coherency of GWs background

$$\langle \mathbf{h}_q^*(\tau'')\mathbf{h}_q(\tau')\rangle = \gamma_q (|\tau'-\tau''|) \sqrt{\langle |\mathbf{h}_q(\tau')|^2 \rangle \langle |\mathbf{h}_q(\tau'')|^2 \rangle},$$

Fully incoherent $\gamma_q(|\tau' - \tau''|) = \Delta \eta \, \delta(\tau' - \tau''),$ $\gamma_q(|\tau' - \tau''|) = 1.$ Fully coherent

GW-induced Freeze-in

The energy density of Weyl fermions

$$\langle \rho_{\psi}(\tau) \rangle = \frac{1}{4\pi} \frac{1}{a^{4}(\tau)} \int_{\tau_{i}^{+}}^{\tau} d\tau' \int_{\tau_{i}^{-}}^{\tau} d\tau'' \int q^{2} dq \left\langle h_{q}(\tau'')h_{q}^{*}(\tau') \right\rangle \int k^{4} dk \int d\theta \sin^{3} \theta \, e^{i(k+\omega)(\tau'-\tau'')} \\ \times (k+\omega) \Big[2 - \frac{\sin^{2} \theta((\omega+k)^{2}+q^{2})}{2\omega(\omega+k-q\cos\theta)} \Big] + c.c.$$

It acts like radiation $\langle P_{\psi}(\tau) \rangle = \frac{1}{3} \langle \rho_{\psi}(\tau) \rangle \propto \frac{1}{a^4(\tau)}.$

Final result
$$\langle \rho_{\psi}(\tau) \rangle = \left(\frac{q_{\text{peak}}}{a(\tau)}\right)^4 \left(\frac{H_0}{\mathcal{H}_*}\right)^2 z_*^2 \mathcal{C} \qquad \Omega_{\text{peak}},$$

GW-induced Freeze-in & Dark Matter

(effectively) massless during production

Fermion eventually becomes massive with mass M

$$\Omega_{\psi,0} \simeq 0.36 \times \mathcal{C}\left(\frac{M}{T_*}\right) \left(\frac{q_{\text{peak}}/\mathcal{H}_*}{100}\right)^4 \left(\frac{g_*(\tau_*)}{106.75}\right)^{4/3} \left(\frac{T_*}{3 \times 10^{11} \,\text{GeV}}\right)^5 \left(\frac{\Omega_{\text{peak}}}{10^{-6}}\right).$$

Parameter space of GW-induced freeze-in of fermion

A.M. & Kopp 2024

Parameter space of GW-induced freeze-in of fermion

A.M. & Kopp 2024

Gravitational Waves Spectrum

Age of the Universe = Billions of Years

Gravitational Waves Spectrum

GW-induced freeze-in mechanism requires a GWs spectrum with peak frequency

f_{peak} ∈ (kHz-GHz)

Age of the Universe = Billions of Years

Gravity and Quantum Effects in Cosmology can still surprise us: We discussed an effect that is zero at tree level and non-zero at 1loop in cosmic perturbations!

Cosmic Perturbations (like GWs) naturally break the conformal symmetry of Weyl Fermions in Cosmology

It leads to a new mechanism for dark matter production in early universe, i.e. GW-induced freeze-in of fermionic dark matter.

Questions?!