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Review of inflationary perturbations

* During the era of inflation, we want to study metric perturbations
that are produced due to quantum fluctuations.
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Review of inflationary perturbations

* During the era of inflation, we want to study metric perturbations
that are produced due to quantum fluctuations.

* A convenient choice to describe these fluctuations is the
comoving gauge, where the inflaton is fixed ¢ = ¢(t) and acts as
the clock, and all the perturbations are absorbed in the metric.

* We represent the perturbations as (, and the metric is given by
gij = a*(t)e* "5y



Conservation of ¢ - Intuition

* We expect ( to be conserved on super horizon scales.

* Conservation important for modern cosmological program — sets
the initial conditions for the rest of cosmic evolution.

* Symmetries of ¢ confirm this intuition —in the soft limit ( should
be equivalent to rescaling the coordinates



Conservation of ¢ - Technical Details

* But, itis technically hard to see — because of loops.
* |t has been proven to all orders.

* The arguments are diagrammatic in nature.
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The worry

A (C(k) C(K))

5. (0iCDi0)°
(aH)*

S D )\/d?’xdt(aH)

Time

Question 1: t — 00 can give time dependence




The worry

Time

(C(k) C(K))

3p—¢ (0:€0i()*
(aH)*

S D )\/d?’xdt(aH)

Question 1: t — 00 can give time dependence

2 3

tion 2: S — + — ...
Question e l+o+ 2 + §) + what about this object?

Sure, derivatives tend to 0, but



Regulators

* What makes these calculations more confusing is the lack of
obviously nice regulators.

* Nice regulators make our lives a lot easier by only keeping track of
as much physics as possible, while throwing away scheme
dependent things as much as possible.

* Moreover, we want to choose regulators and schemes that make
our life as simple as possible. However, in de Sitter, this choice is
not obvious.



Power of Regulators

* Consider a simple one-loop diagram for a
scalar in flat spacetime.

e Action = Ly = %(%qﬁ 0"$)%, A some EFT scale

214 Auv J4 L4 A4
e If we use UV cutoff, loop result gives J / P 2 UV

AB (2n)d Y AL Al

* Makes decoupling of scales hard to see. Really, this term should
be absorbed by a local counterterm, and gives no RG/logs.



Power of Regulators

* Consider a simple one-loop diagram for a
scalar in flat spacetime.

e Action = Ly = %(%qﬁ 0"$)%, A some EFT scale

92]{4 d4p
* Dim reg sets it to 0, making no RG obvious > ()



Dim reg issues for in-in correlators

* In our in-in picture, dim reg isn’t as great. In flat space, consider

dgp n _impt
| e




Dim reg issues for in-in correlators

* In our in-in picture, dim reg isn’t as great. In flat space, consider

dgp n _impt
| e

* Now for t = 0, we get a Power Law divergence, which dim reg
automatically sets to 0, so no logs

Jir =
@’




Dim reg issues for in-in correlators

* In our in-in picture, dim reg isn’t as great. In flat space, consider

dgp n _impt
| e

* But, if we first integrate p, we get

/ dgp pneimpt—emp|t| y 1 F[S + n]
(2m)3 212 (—imt)3+n

* Now taking ¢t — 0 limit gives a divergence. The original divergence
therefore was never really regulated.



Try to understand loops and IR divergences

* S0, we want to develop technigues to make the physics in the IR
more manifest.

* This goes hand-in-hand with understanding how to regulate loops
In @ more convenient way.



Game plan

* Two ways to accomplish these :

* Writing an EFT description for the long wavelength modes — that
will make the IR behavior more manifest, as well as offer a
convenient way of regulating loops in the IR.

* For the full theory, introduce the Mellin representation as a
technique for calculating loops in a dim reg fashion. An added
advantage that it is a natural scheme to match onto the EFT.
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Overview

* We want to construct an effective theory for the metric modes ¢
that reproduce the IR behavior (in particular divergences)

* In generic models we have that ( propagates with a speed of
sound cs < 1.

* For the purposes of our discussion, we will set ¢, = 1. [t doesn’t
change any of our results, and makes it conceptually simpler to
follow.



Technical motivation for constructing EFT

* The technical motivation starts with the idea that the IR logs we
see are of the form k/(aH).

* We want to understand this as a statement similar to logp2/A%v
In flat spacetime.

* So, we want to construct an EFT with a (comoving) UV cutoff
Auyv = a(t)H(t), thus capturing the effects of these logs.



Time

/ k<L ald
\/\ A

k> aH



Time

Full Calculation
(Runs over multiple scales)

’\@WV\/



Time

Effective Field Theory
AUV = aH

— /\




What we want in our theory - 1

, k
* \We want to power countin A = = kT, 7= (—aH)™"
a

* Accomplishes first goal - loop integrals are now nice scaleless
power laws which can be regulated in a dim reg fashion

dgk n i1kt dSk n - (ZkT)Z
/(27?)3k e —>/(27T)3k: <1—|—sz—|— > —|—>

— 0



What we want in our theory - 2

* We want to write the theory so that IR effects are obvious by
looking at the action. Loop calculations only necessary to
calculate factors of 2s and 7Ts.

* The theory that does this is Soft de Sitter EFT (SASET)
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|dentify degrees of freedom

* We start with the UV equations of motion

¢ — L(1 4+ €)(2+1)0sC + K¢ = 0

T

7= (—aH)™*

€, 7] slow roll parameters

* Inthe £ — 0 limit, we identify the soft degrees of freedom

0 3+2e+n

(xXT (xXT

* We want to describe the fluctuations around these classical long
wavelength solutions



Understand degrees of freedom from UV

* To see the structure of the EFT degrees of freedom, we take the
solutions of the UV equations of motion

(= (1+ ikT)e_ikT 7= (—aH)™"



Understand degrees of freedom from UV

* To see the structure of the EFT degrees of freedom, we take the
solutions of the UV equations of motion

(= (1+ ikT)e_ikT 7= (—aH)™"

* We take the superhorizon limit== Expand in k7 < 1

]{22 k33
§:<1+ 27 +...>—7J 37 (14...)

| |

Describe these two degrees of freedom




Understand degrees of freedom from UV

* To see the structure of the EFT degrees of freedom, we take the
solutions of the UV equations of motion

(= (1+ ikT)e_ikT 7= (—aH)™"

* We take the superhorizon limit== Expand in k7 < 1

k22 k33
§:<1+ ; +...>—z’ 37 (1+4...)

(= G+ o+ TG



Properties of (. ,(_

(4, (_ act as scaling operators

= At k=M Ce(Ok) = k) CC(R) = X3 (k)
- (. scales as [k]”, while ¢_ scales as [k]°
* (1 and (_ make explicit our intuition of power counting.

* To derive our EFT action, we can just expand in the soft limit. Just
plug ¢ = ¢, + (aH)*¢_, and go.
* Correcting for slow roll factors, we substitute
¢ =y + (aH) P B=3+2+n=3—(n,—1)



EFT free action

* Goal now is to write down the action in terms of (+,(_

* Since we have two degrees of freedom, we expect to get a first
order equation for ¢+, ¢—



EFT free action

* Goal now is to write down the action in terms of (+,(_

* Since we have two degrees of freedom, we expect to get a first
order equation for ¢+, ¢—

S = —6M / dxdt (H,) %€, (ky) 2" [g’;g_}



EFT Properties and Inputs

* We see that (1 and (_ are conjugate momenta of each other.

Cr(2),C—(y)] = G2 (I, 21 (k*)—2€—n53(x —9)

x) “€x

* The EFT is supplemented by initial conditions, which describe the
statistics of (,,(_ athorizon crossing.

HY 1 (k2 HY K3 k2T
(C+C)1c = 4M§ZH* k3 < L ) ((~C-c = 4M§ZH* 9 (h)




Time dependence <— RG

* Following the time dependence of ¢ after horizon crossing is
equivalent to following the time dependence of (1 inthe EFT.

* Time dependence is equivalent to RG. This is because our UV
cutoffis Ayv = aH. Hence, our RG equations are of the form

d d
O = O=0
dAUV d log AU\/

Auv

e Using Ayy = aH = et we see that the RG equations are written
In the form O

a(l) — ’)/OO



Time dependence <— RG

* S0, our goal is reduced to something simple. Write down the EFT,
based on symmetries and power counting.

* Check whether EFT produces any marginal or relevant terms.

* If not, we can make an all order statements, including loops,
about the time dependence of (.



Interaction terms

* A generic interaction term can be written as

§5 [ BO PG

n!m)!



Properties

* A generic interaction term can be written as

; (t) [, Scales as[k]ﬁ
3 n 3—mp n m
S5 [dadr S W) C)N ) o

* So, the scaling dimension of this operator is mp
* Measure scales as [d°z] = [k]*
* Units madeup by A = a(t)H (¢)

* c,(t) captures slow roll effects, provides additional scaling like
(aH), (aH)".



How to power count operators

* A generic interaction term can be written as

§5 [ BO PG

n!m)!

* Power counting means that the term contributes

2 mpB—3 3 2 3(m—1)—3(ns—1) m B
aH B aH "

B=3—(ns—1)~3

relevant

marginal

irrelevant



How to power count operators

* A generic interaction term can be written as

§5 [ BO PG

n!m)!

* Moreover, any spatial derivative term power counts as

1 k
— & ?
a aH

 For time derivatives, we can use EOM. We have that both

w=(8) w=(L)




Leading order Interaction

* So, leading order interaction will be

S D /de dt Cn(t) (A)? (¢ )™




Leading order Interaction

* So, leading order interaction will be

S D /d%dt n(?) (A2 ()™ 2

* Turns out not. This can be removed by an appropriate field
redefinition of (_

nc,

(_ — (A 6(H.)~2c. (k)2 ,{n,( )2 (C)"™




Leading order Interaction

* The leading order term actually becomes

55 [ a0

n!

* As we see, even before imposing symmetries, we only have
marginal terms - only logarithmic time dependence possible in
the IR.

* This is Weinberg’s classic result that divergences in the IR can be
at most logarithmic.

* We have solved the power counting problem - Now let us impose
our symmetries!



Symmetries of (1, (—

* The important symmetry for our purpose is the dilatation
C(z) = ((we?) = A
* |n the soft limit this breaks up as
Gt () + (aH) T ¢ (2) = (¢ (ze?) = X) + (aH) "¢ ()
 Thus, we have

((z) = o (zet) — A (—(x) = ¢ (we)



Symmetries of (1, (—

* Then, our action does not have any marginalterm ('(_

* Rather, all terms should come with either spatial or temporal
derivatives.

2
* Since we need 2 spatial derivatives, both of these give O (%)
a

suppression.



Action has only irrelevant terms?

* So, inthe IR, all terms are suppressed by O(\?).

* The argument is not complete. Our action is gauge fixed. Thus, we
can have non-local terms that are also allowed.

« We can put in terms of the form a?0~ 2, which seem to boost
relevance of terms. For example, in the UV, we have the three
point interaction :

Lot (@é) 9ic
ct” \ 0?



Non-local terms ARE suppressed

* The key idea is that dilatation implies that in the ¢ — 0 limit, we
describe an unperturbed background.



Non-local terms ARE suppressed

* The key idea is that dilatation implies that in the ¢ — 0 limit, we
describe an unperturbed background.

* So aterm of the form £ D a1 (1) e ¢ 071°°(0;¢0;¢) naively would

not die away in the soft limit. Rather, this behaves naively as
q2 X q—100 = q_98 and hence grows in the ¢ — 0 limit.



Non-local terms ARE suppressed

* Thus, we need more factors of momenta in numerator of any
operator. Thus, in soft limit the operators are guaranteed to be of

order I n:m > 0
aH

* A more formal argument can be given by constructing the charge
operator, but the physics is the same.



Action has only irrelevant terms

* With this, we have shown that any interaction term in the theory is
irrelevant. Hence, (1 does not generate time dependence in the
theory.

* So, is the IR theory completely trivial, with no interesting behavior?
What does the effective theory predict?



The worry
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Question 1:
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t — 00 dies away



The worry

Time

(C(k) C(K))

3~ (9i€0:)°
(aH)?

S D )\/d?’xdt(aH)

Question 1: t — 00 dies away

]

2 3
Question 2: [ s — 1+ ¢+ 5 + 5 4+ .. J Self contractions?




Time dependence in composite operators

* Actually, composite operators do generate time dependence.
Operator mixing is ¢ — 1.

* (+ has scaling dimension 0. (— has scaling dimension 3. So only
powers of (+ can mix.

* This tells us that ¢¢ — ¢+ can generate time dependence.



eS inthe IR

2 3
* We have that e<+:1+c++<2++<g+...

* Now, we can consider various self contractions, and consider
divergences due to all of them.

* What we get is a nice result — The various Wick contractions of e+
actually give a renormalized e+, that is, e+ is an eigenvector under
RG, and acquires an anomalous scaling dimension :

d S+ — b+ In

dt* nl
n>2

where t. is some fixed reference time, equivalent to ¢ in MS bar.



Loops build up probability distribution

d Y
(+ — € In
dt*e el n!
n>2
* The coefficients 'n are the cumulants of the probability

distribution of ¢ at any point z.

H(t,)*
47T2M51H(t*)

o Yo =A¢= encodes the standard deviation.

* The higher 7n encode the higher moments of the probability
distribution.



The worry

Time

(C(k) C(K))

Question 1:

Question 2 :

3~ (9i€0:)°
o (@l

S D )\/d?’xdt(aH)

> 7 x e ¢

t — o0 dies away

]

2 3
[ e — 1 + (¢ + ? + E + .. J Self contractions?




( retains symmetries to all orders

* The first nice thing this tells us that after taking loops into account
eS+ renormalizes into itself. Hence, (1 and thus ( still retains all
its non-linear symmetries in the IR.

* This is another way to see quantum loops cannot change the time
independence of C.

« Moreover, the time dependence of e+ encodes the time
dependence of the volume of the Universe at the end of inflation.



Volume fluctuations in the IR

* In our gauge, we have chosen inflation to end at the same time
everywhere. The inflaton is given by ¢ = ¢(t) with no
perturbations.

* We have gi;; = a2(t)62<5z‘j

* Thus, time dependence of ¢¢ is just telling us that a(t), and hence
the volume of the Universe, gets an additional statistical time
dependence due to random walk of €.

* This fact encodes that the quantum nature of the perturbations
give rise to statistical nature of the volume of reheating surface.



EFT accomplishments, and matching onto UV

* S0, we have used EFT techniques to understand the effect of
loops in the IR and understood how to regulate loops in the soft
limit.

* To understand the effects of loops in the UV, as well as use a
convenient regulator to match the EFT to the IR, we will use a
convenient Mellin representation.

* Mellin has the advantage of doing the full theory loops in
manifestly dim reg way.
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Introduction

* The Mellin representation allows us to write down Hankel
functions as power series in the argument :
c+100 ds

. —2s
e = [ (s - 5) (-5)

CcC— 100



Introduction

* The Mellin representation allows us to write down Hankel
functions as power series in the argument :
c+100 d . —2s
el ™V/2 (1) (L) — _SF( Z)P( _K) _ s
iTe S (2) /C_ioo ol (8 + ; S5 ;
 The integral is essential a sum over all the poles of the 1" function :

3(s) ¢

—0@—0 0@ R(s)




Introduction

* We turned the Hankel function into a sum of powers! This will
accomplish goal of doing integrals of power laws.

ime™/2HV (z) =) Res [F (S T %) g (S N g) (Z;) 28]

* We always close contours to the left!

3(s) ¢

—0@—0 0@ R(s)




Connection to inflation

 Useful because ¢(k7) «x 7"HV (—k7), o, —

C(kﬂ:—ﬁ(_f)“”—;‘l/;_;F (S+3+(rif—1))

(. ~1). Mellin gives

N
(S_ 3+ (77: - 1)) (_Z-%T)—zs




Connection to inflation

(s =1 Mellin gives

(- Petnmy (Cary >

e Useful because ¢(k7) x 7HY (k1) ,,

C(kﬂ:—ﬁ(—f)“’”‘%”/;; ( 3+ ( ns—l )

3
2
r

* The I" function pole strugture becomgs

3(s)

—3/4 |3/4




Connection to inflation

* Now, g does something special

= e [t P o Lt ()




Connection to inflation

* Now, g does something special

= e [t P o Lt ()

* We have removed the only positive pole in the problem!

3(s)

~1/4
—0-0-0-0-0-0-0-0—5%% R(s)
—3/4




Connection to inflation

* Now, g does something special
; L(_T)W;_l /%r (H 3+ (Tif — 1)) . (H 1+ (ZS — 1)) (m;)@

* We have removed the only positive pole in the problem!

(\J
\9(5) Inthe 7 — 0 limit, we
| C have that ( — 0
_1/4
——0-0-0-0-0-0-0-0—8 R(s)

~3/4




Divergences in Mellin

* In generic loop momenta, we have a bunch of ¢ floating around.
Each ¢ comes with its own poles.

* Now, when we do loops, we enforce constraints on the poles. This
comes from the momenta integrals, which is of the form

d3 —2(s3+s4+s5+s6) l 3
(27T)3p 384T S5TS6 >—27T(5 5—(83+84+85+56)

i should survive”




Divergences in Mellin

* This shifts some of the poles to the right!

* So generically, we get left poles and right poles. Right poles not an
Issue, because our prescription doesn’t pick them up.

3(s) ¢

—0@—0 0@ —0 00— R(s)




Divergences in Mellin

* Unless ... These right poles overlap with the left poles.



Divergences in Mellin

* Unless ... These right poles overlap with the left poles.

* When we have colliding poles, divergences start showing up,
because we cannot separate the left and the right poles.

3(s)

€
1

0 0 000 0 0 00 v




Divergences in Mellin

* Since these poles are due to I' functions, Cauchy’s theorem gives
us that evaluating residue of one pole gives us a I'(¢) pole.

2
O

0 0 000 0 0 00 v




Calculating loops in Mellin

* So in Mellin, divergences becomes a statement of colliding poles.

* Now, we take a one loop correction to the power spectrum. Let us
take the sample interaction term

H;py = —Ma>H 33

(C(k) C(K))




Calculating loops in Mellin

* Then we have that loop corrections to momenta is given by

€y =¥ [ anat) [ danatin) [ 55

— 0 — 0

C(k, )R 7)C (b, 71)CF (K 72)C (0 1) CF (9, 72)C(p — by 1) CF (K — p,7)
+ 3 other terms

* We can see that in Mellin, we will have power law integrals over
both p, 7T

o™ [ ) ) )




Calculating loops in Mellin

* Then we have that loop corrections to momenta is given by
! m a3k
€N == [ dnat(n) [ dmat(m) [ G5

C(k, 7)C(K, 7)C* (hy 71)CF (K, 72)C (0, 71)CF (0, 72)C(p — by 1) (K — p, 72)
+ 3 other terms

* Substituting, we get

(GBI = =X, T)C(K ) / dnal(n) [ dna'(m) [ 3

— 0 — o0

(H/ ds; ( 4 _1)>F<si+1+(zs_1)> (_ip;Ti)2si>

1 943(ng—1) 943(ng—1)
—3( T) —T2 ’

(_1)—281 —282—284—286



Momenta Loop integral

* Calculating the loop integrals is now easy, since we get power
laws. The internal momenta integral is of the form

dgp —2(s3+s4 —2(s5+s6
/Wp ( )(k —p) ( )

* Taking internal momenta to be large, p > &,

d3p —2(s3+54+s5+s 2 3
/Wp 2(3+4+5+6)%—%5<§—(83+S4—|—85—|—86)>

* We check whether poles collide or not. In our case, it turns out to
not.



Time integral

* Looking at the time integrals, we see that we get

e —2(s1+s2)
(O T)C( 7)) o BT

S1 + S9
* Now, remember that every pole for C was on the negative real axis.
3(s)

* So the 7 dependence is supposed to be
a positive power law, and hence dies 14

inthe 7 — 0 limit. —0+m+7;0—%
-3




Time integral

* Looking at the time integrals, we see that we get

e —2(s1+s2)
(O T)C( 7)) o BT

81—|—82

* Now, remember that every pole for C was on the negative real axis.

3(s)
* So the 7 dependence is supposed to be
a positive power law, and hence dies 14
inthe 7 — 0O limit. ——0-0-0-0-0-0-0-0—4

~3/4
* So, Mellin sets this integral to 0!




We do not get divergences

* Thus, what we learn is that this term does not contribute to RG,
and hence cannot give time dependence in the IR.

 This is what we learnt from the EFT method as well.

* Moreover, Mellin sets terms to 0 in a similar way that dim reg sets
terms to O in flat spacetime.



Conclusion

* We use EFT to show that using symmetries and power counting,
we can show that ( is time independent to all orders.

* We study the IR effects of loops and show that the natural quantity
that does get modified through loops is the spacetime volume.

* We introduce the Mellin representation to regulate loops in the UV.
We use Mellin to show ( time independence, and elucidate how it
reduces the problem to calculating scaleless integrals.
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