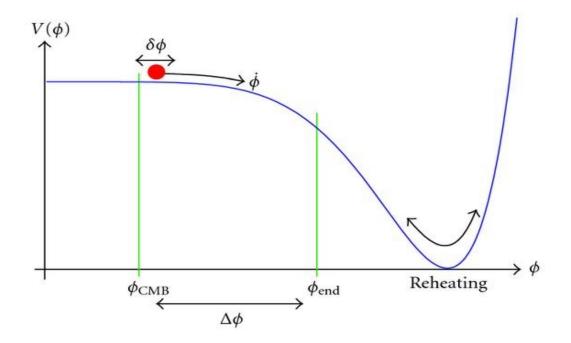
Soft Metric Fluctuations During Inflation

Kshitij Gupta, Daniel Green (arxiv : 2410.11973)

INTRODUCTION

Review of inflationary perturbations

• During the era of inflation, we want to study metric perturbations that are produced due to quantum fluctuations.



Review of inflationary perturbations

- During the era of inflation, we want to study metric perturbations that are produced due to quantum fluctuations.
- A convenient choice to describe these fluctuations is the comoving gauge, where the inflaton is fixed $\phi = \phi(t)$ and acts as the clock, and all the perturbations are absorbed in the metric.
- We represent the perturbations as ζ , and the metric is given by $g_{ij}=a^2(t)e^{2\zeta(x,t)}\delta_{ij}$

Conservation of ζ - Intuition

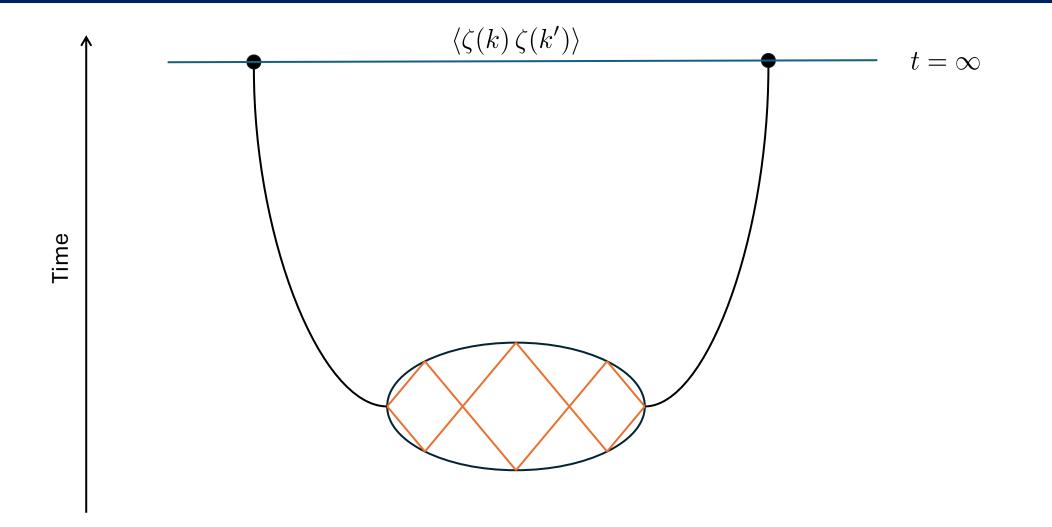
- We expect ζ to be conserved on super horizon scales.
- Conservation important for modern cosmological program sets the initial conditions for the rest of cosmic evolution.
- Symmetries of $\zeta\,$ confirm this intuition in the soft limit $\zeta\,$ should be equivalent to rescaling the coordinates

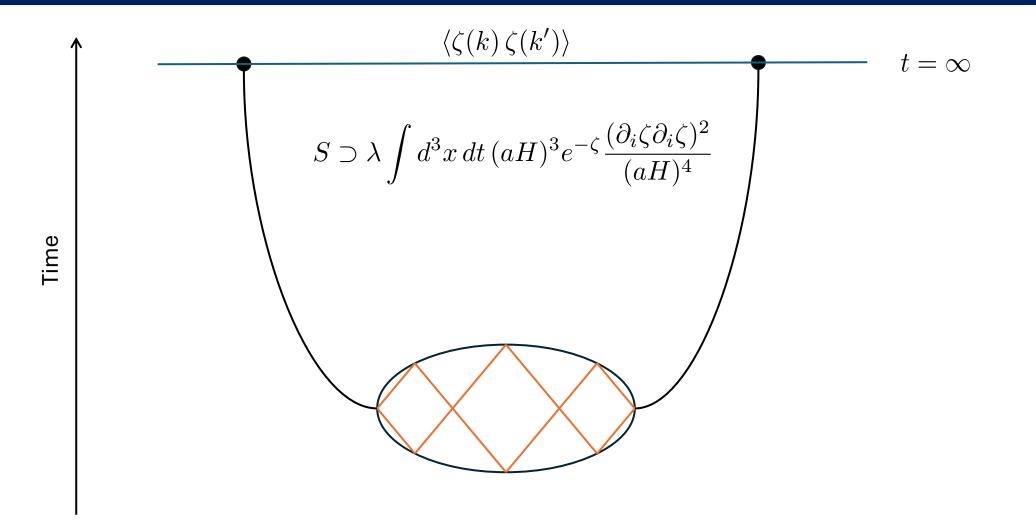
Conservation of ζ - Technical Details

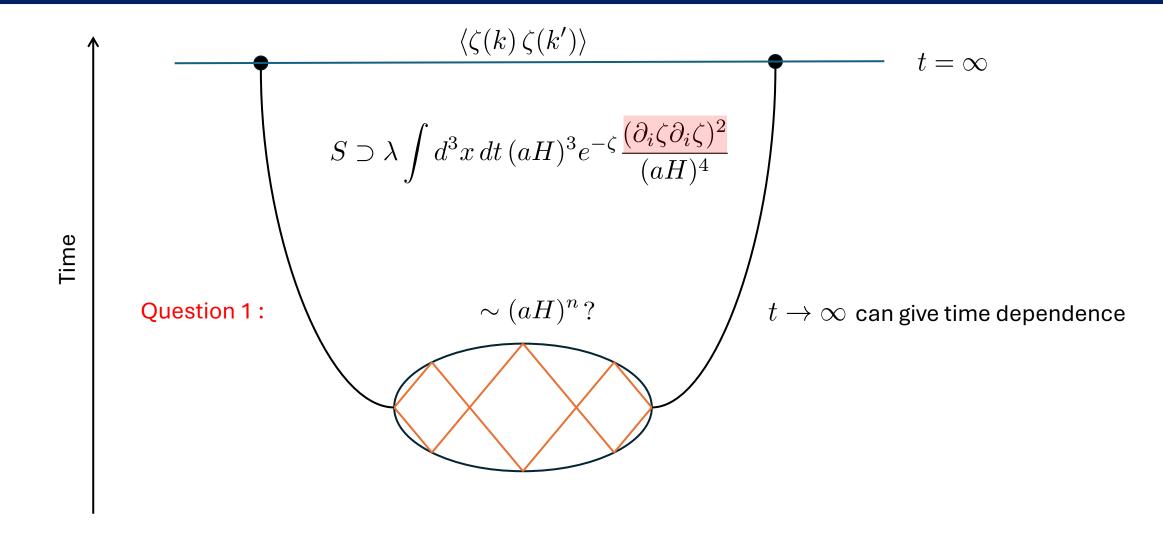
- But, it is technically hard to see because of loops.
- It has been proven to all orders.

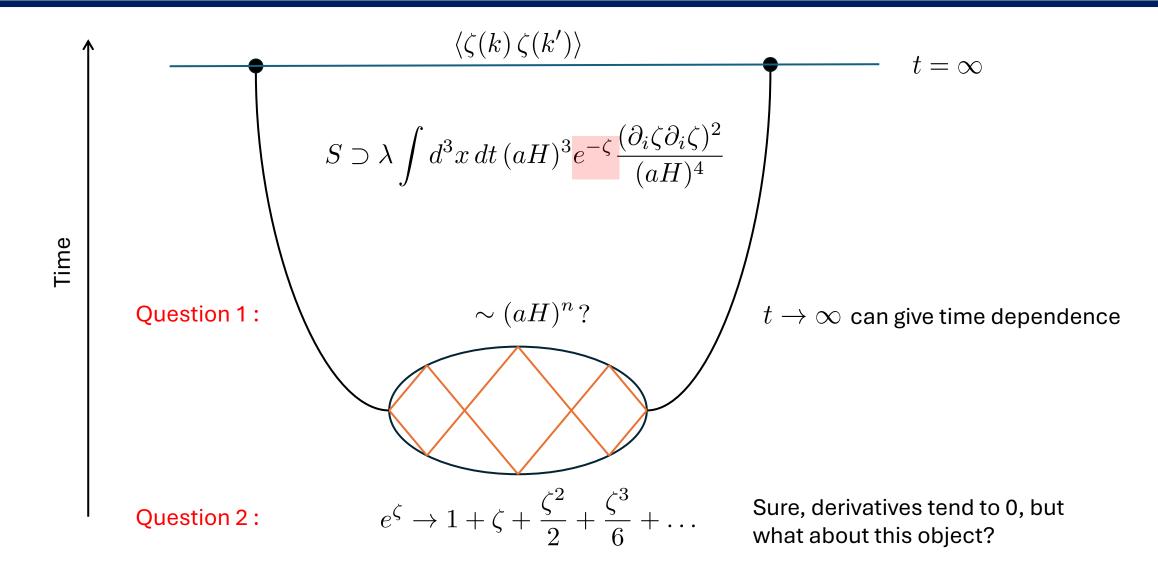
Senatore and Zaldarriaga; Assassi, Baumann, Green

• The arguments are diagrammatic in nature.









- What makes these calculations more confusing is the lack of obviously nice regulators.
- Nice regulators make our lives a lot easier by only keeping track of as much physics as possible, while throwing away scheme dependent things as much as possible.
- Moreover, we want to choose regulators and schemes that make our life as simple as possible. However, in de Sitter, this choice is not obvious.

Power of Regulators

• Consider a simple one-loop diagram for a scalar in flat spacetime.

• Action
$$\Rightarrow \mathcal{L}_{int} = rac{g}{\Lambda^4} (\partial_\mu \phi \, \partial^\mu \phi)^2$$
 , Λ some EFT scale

• If we use UV cutoff, loop result gives

$$\frac{g^2 k^4}{\Lambda^8} \int^{\Lambda_{\rm UV}} \frac{d^4 p}{(2\pi)^4} \to g^2 \frac{k^4}{\Lambda^4} \frac{\Lambda_{\rm UV}^4}{\Lambda^4}$$

k

• Makes decoupling of scales hard to see. Really, this term should be absorbed by a local counterterm, and gives no RG/logs.

Power of Regulators

• Consider a simple one-loop diagram for a scalar in flat spacetime.

• Action
$$\Rightarrow \mathcal{L}_{int} = rac{g}{\Lambda^4} (\partial_\mu \phi \, \partial^\mu \phi)^2$$
 , Λ some EFT scale

- Dim reg sets it to 0, making no RG obvious $\frac{g}{2}$

$$\frac{^2k^4}{\Lambda^8} \int \frac{d^4p}{(2\pi)^4} \to 0$$

p

p

k

Dim reg issues for in-in correlators

• In our in-in picture, dim reg isn't as great. In flat space, consider

$$\int \frac{d^3p}{(2\pi)^3} p^n e^{impt}$$

Dim reg issues for in-in correlators

• In our in-in picture, dim reg isn't as great. In flat space, consider

$$\int \frac{d^3p}{(2\pi)^3} p^n e^{impt}$$

• Now for t=0 , we get a Power Law divergence, which dim reg automatically sets to 0, so no logs

$$\int \frac{d^3p}{(2\pi)^3} p^n = 0$$

Dim reg issues for in-in correlators

• In our in-in picture, dim reg isn't as great. In flat space, consider

$$\int \frac{d^3p}{(2\pi)^3} p^n e^{impt}$$

 $\ensuremath{\bullet}$ But, if we first integrate p , we get

$$\int \frac{d^3p}{(2\pi)^3} p^n e^{impt - \epsilon mp|t|} \to \frac{1}{2\pi^2} \frac{\Gamma[3+n]}{(-imt)^{3+n}}$$

• Now taking $t \to 0$ limit gives a divergence. The original divergence therefore was never really regulated.

Try to understand loops and IR divergences

- So, we want to develop techniques to make the physics in the IR more manifest.
- This goes hand-in-hand with understanding how to regulate loops in a more convenient way.

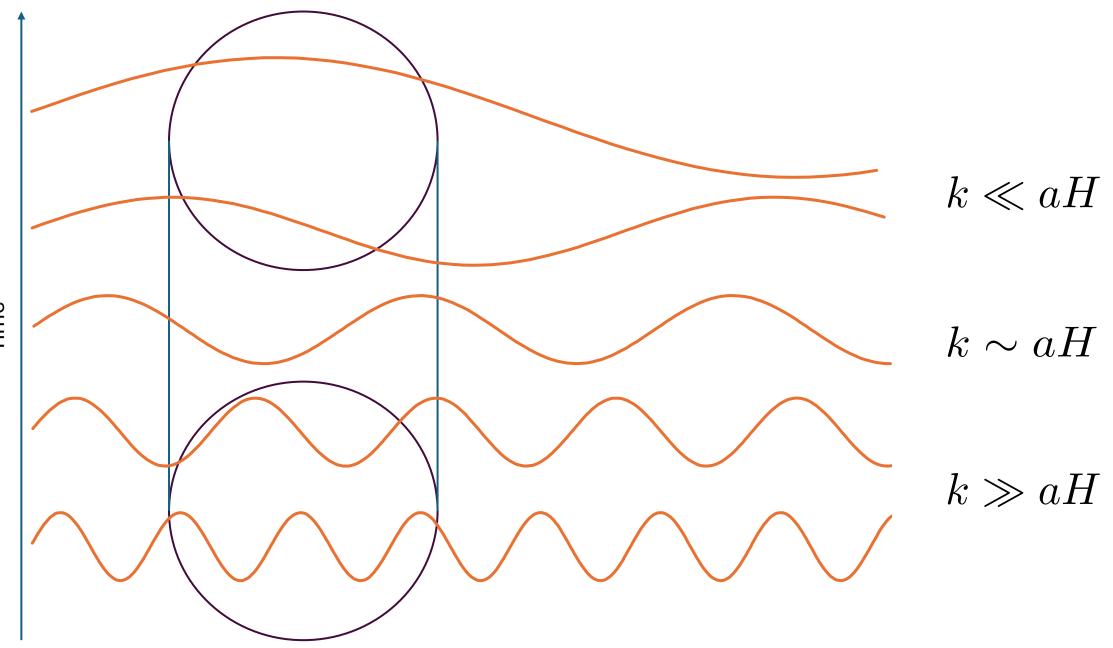
- Two ways to accomplish these :
- Writing an EFT description for the long wavelength modes that will make the IR behavior more manifest, as well as offer a convenient way of regulating loops in the IR.
- For the full theory, introduce the Mellin representation as a technique for calculating loops in a dim reg fashion. An added advantage that it is a natural scheme to match onto the EFT.

EFFECTIVE FIELD THEORY

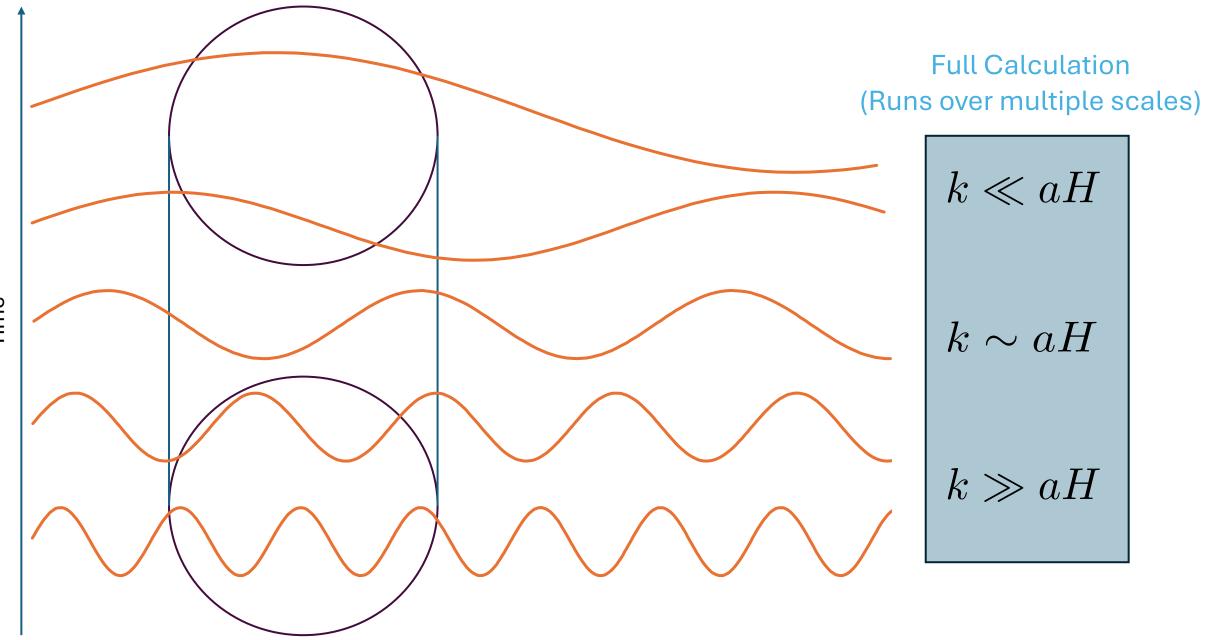
- We want to construct an effective theory for the metric modes ζ that reproduce the IR behavior (in particular divergences)
- In generic models we have that ζ propagates with a speed of sound $c_s \leq 1$.
- For the purposes of our discussion, we will set $c_s = 1$. It doesn't change any of our results, and makes it conceptually simpler to follow.

Technical motivation for constructing EFT

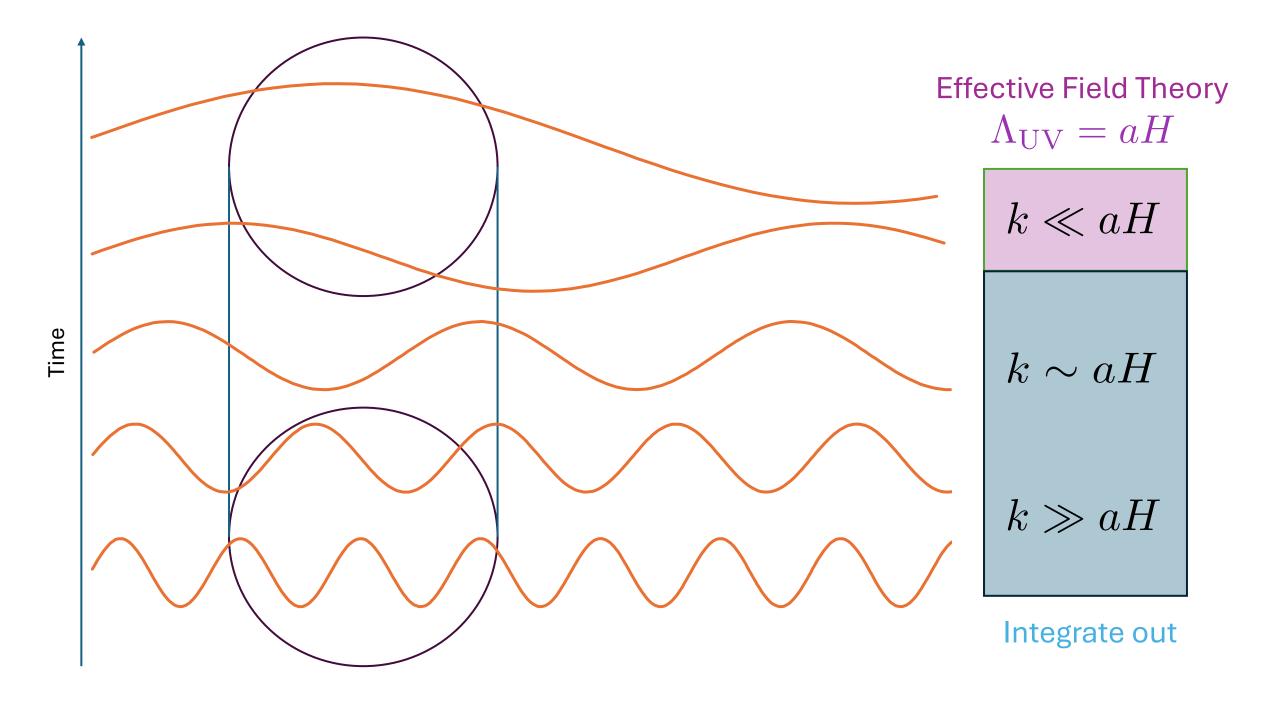
- The technical motivation starts with the idea that the IR logs we see are of the form k/(aH).
- We want to understand this as a statement similar to $\log p^2/\Lambda_{\rm UV}^2$ in flat spacetime.
- So, we want to construct an EFT with a (comoving) UV cutoff $\Lambda_{\rm UV}=a(t)H(t)$, thus capturing the effects of these logs.



Time



Time



What we want in our theory - 1

• We want to power count in
$$\lambda = \frac{k}{aH} = k \tau$$
, $au = (-aH)^{-1}$

 Accomplishes first goal - loop integrals are now nice scaleless power laws which can be regulated in a dim reg fashion

$$\int \frac{d^3k}{(2\pi)^3} k^n e^{ik\tau} \to \int \frac{d^3k}{(2\pi)^3} k^n \left(1 + ik\tau + \frac{(ik\tau)^2}{2} + \ldots\right)$$
$$\to 0$$

What we want in our theory - 2

- We want to write the theory so that IR effects are obvious by looking at the action. Loop calculations only necessary to calculate factors of 2s and π s.
- The theory that does this is Soft de Sitter EFT (SdSET) Cohen and Green

SOFT de SITTER EFT

Identify degrees of freedom

• We start with the UV equations of motion

$$\partial_{\tau}^2 \zeta - \frac{1}{\tau} (1+\epsilon)(2+\eta) \partial_{\tau} \zeta + k^2 \zeta = 0 \qquad \begin{array}{c} \tau = (-aH)^{-1} \\ \epsilon, \eta \text{ slow roll parameters} \end{array}$$

- In the $k \to 0$ limit, we identify the soft degrees of freedom

$$\zeta \propto \tau^0 \qquad \qquad \zeta \propto \tau^{3+2\epsilon+\eta}$$

• We want to describe the fluctuations around these classical long wavelength solutions

Understand degrees of freedom from UV

• To see the structure of the EFT degrees of freedom, we take the solutions of the UV equations of motion

$$\zeta = (1 + ik\tau)e^{-ik\tau} \qquad \tau = (-aH)^{-1}$$

Understand degrees of freedom from UV

• To see the structure of the EFT degrees of freedom, we take the solutions of the UV equations of motion

$$\zeta = (1 + ik\tau)e^{-ik\tau} \qquad \tau = (-aH)^{-1}$$

- We take the superhorizon limit \Longrightarrow Expand in $k\tau\ll 1$

$$\zeta = \left(1 + \frac{k^2 \tau^2}{2} + \ldots\right) - i \frac{k^3 \tau^3}{3} (1 + \ldots)$$

Describe these two degrees of freedom

Understand degrees of freedom from UV

• To see the structure of the EFT degrees of freedom, we take the solutions of the UV equations of motion

$$\zeta = (1 + ik\tau)e^{-ik\tau} \qquad \tau = (-aH)^{-1}$$

• We take the superhorizon limit \Longrightarrow Expand in $k\tau\ll 1$

$$\zeta = \left(1 + \frac{k^2 \tau^2}{2} + \ldots\right) - i \frac{k^3 \tau^3}{3} (1 + \ldots)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\zeta = \qquad \zeta_+ \qquad + \qquad \tau^3 \zeta_-$$

Properties of ζ_+, ζ_-

• ζ_+, ζ_- act as scaling operators $x \to \lambda^{-1}x$ $k \to \lambda k$ $\zeta_+(\lambda k) \to \zeta_+(k)$ $\zeta_-(\lambda k) \to \lambda^3 \zeta_-(k)$ • ζ_+ scales as $[k]^0$, while ζ_- scales as $[k]^3$

- ζ_+ and $\zeta_-~$ make explicit our intuition of power counting.
- To derive our EFT action, we can just expand in the soft limit. Just plug $\zeta=\zeta_++(aH)^{-3}\zeta_-$, and go.
- Correcting for slow roll factors, we substitute

$$\zeta = \zeta_{+} + (aH)^{-\beta}\zeta_{-}$$
 $\beta = 3 + 2\epsilon + \eta = 3 - (n_{s} - 1)$

- Goal now is to write down the action in terms of $\,\zeta_+,\zeta_-\,$
- Since we have two degrees of freedom, we expect to get a first order equation for ζ_+,ζ_-

- Goal now is to write down the action in terms of $\,\zeta_+,\zeta_-\,$
- Since we have two degrees of freedom, we expect to get a first order equation for ζ_+,ζ_-

$$S = -6M_{pl}^2 \int d^3x \, dt \, (H_*)^{-2} \epsilon_* (k_*)^{-2\epsilon - \eta} \left[\dot{\zeta}_+ \zeta_- \right]$$

- We see that ζ_+ and ζ_- are conjugate momenta of each other. $[\zeta_+(x), \zeta_-(y)] = -\frac{1}{6M_{pl}^2(H_*)^{-2}\epsilon_*(k_*)^{-2\epsilon-\eta}}\delta^3(x-y)$
- The EFT is supplemented by initial conditions, which describe the statistics of ζ_+, ζ_- at horizon crossing.

$$\langle \zeta_{+}\zeta_{+}\rangle_{\rm IC} = \frac{H_{*}^{4}}{4M_{pl}^{2}\dot{H}_{*}}\frac{1}{k^{3}}\left(\frac{k_{*}}{k}\right)^{2\epsilon+\eta} \qquad \langle \zeta_{-}\zeta_{-}\rangle_{\rm IC} = \frac{H_{*}^{4}}{4M_{pl}^{2}\dot{H}_{*}}\frac{k^{3}}{9}\left(\frac{k}{k_{*}}\right)^{2\epsilon+\eta}$$

- Following the time dependence of ζ after horizon crossing is equivalent to following the time dependence of ζ_+ in the EFT.
- Time dependence is equivalent to RG. This is because our UV cutoff is $\Lambda_{\rm UV}=aH.$ Hence, our RG equations are of the form

$$\Lambda_{\rm UV} \frac{d}{d\Lambda_{\rm UV}} \mathcal{O} = \frac{d}{d\log\Lambda_{\rm UV}} \mathcal{O} = 0$$

• Using $\Lambda_{\rm UV} = aH = e^{Ht}$, we see that the RG equations are written in the form $\partial Q = \alpha \cdot Q$

$$\frac{\partial}{\partial t}\mathcal{O} = \gamma_{\mathcal{O}}\mathcal{O}$$

Time dependence \leftrightarrow RG

- So, our goal is reduced to something simple. Write down the EFT, based on symmetries and power counting.
- Check whether EFT produces any marginal or relevant terms.
- If not, we can make an all order statements, including loops, about the time dependence of ζ_+

Interaction terms

• A generic interaction term can be written as

$$S \supset \int d^3x \, dt \, \frac{c_n(t)}{n!m!} (\Lambda)^{3-m\beta} (\zeta_+)^n (\zeta_-)^m$$

Properties

• A generic interaction term can be written as

$$S \supset \int d^3x \, dt \, \frac{c_n(t)}{n!m!} (\Lambda)^{3-m\beta} (\zeta_+)^n (\zeta_-)^m$$
 Scales as $[k]^{\beta}$ Scales as $[k]^{0}$

 $\Gamma_{1} \uparrow \beta$

- So, the scaling dimension of this operator is $\,meta$
- Measure scales as $[d^3x] = [k]^{-3}$
- Units made up by $\Lambda = a(t) H(t)$
- $c_n(t)$ captures slow roll effects, provides additional scaling like $(aH)^\epsilon, (aH)^\eta$.

How to power count operators

• A generic interaction term can be written as

$$S \supset \int d^3x \, dt \, \frac{c_n(t)}{n!m!} (\Lambda)^{3-m\beta} (\zeta_+)^n (\zeta_-)^m$$

• Power counting means that the term contributes

$$\left(\frac{k}{aH}\right)^{m\beta-3} = \left(\frac{k}{aH}\right)^{3(m-1)-3(n_s-1)} \qquad \begin{array}{l}m=0 & \text{relevant}\\m=1 & \text{marginal}\\m>1 & \text{irrelevant}\end{array}$$

$$\beta = 3 - (n_s - 1) \approx 3$$

• A generic interaction term can be written as

$$S \supset \int d^3x \, dt \, \frac{c_n(t)}{n!m!} (\Lambda)^{3-m\beta} (\zeta_+)^n (\zeta_-)^m$$

• Moreover, any spatial derivative term power counts as

$$\frac{1}{a}\partial_i \to \frac{k}{aH}$$

• For time derivatives, we can use EOM. We have that both

$$[\dot{\zeta}_{+}] = \left(\frac{k}{aH}\right)^{2} \qquad \qquad [\dot{\zeta}_{-}] = \left(\frac{k}{aH}\right)^{2}$$

Leading order Interaction

• So, leading order interaction will be

$$S \supset \int d^3x \, dt \, \frac{c_n(t)}{n!} (\Lambda)^3 (\zeta_+)^n \quad ?$$

Leading order Interaction

• So, leading order interaction will be

$$S \supset \int d^3x \, dt \, \frac{c_n(t)}{n!} (\Lambda)^3 (\zeta_+)^n \quad ?$$

- Turns out not. This can be removed by an appropriate field redefinition of ζ_-

$$\zeta_{-} \to \zeta_{-} + \frac{nc_n}{6(H_*)^{-2}\epsilon_*(k_*)^{-2\epsilon-\kappa}n!} (\Lambda)^3 (\zeta_{+})^{n-1}$$

• The leading order term actually becomes

$$S \supset \int d^3x \, dt \, \frac{c_n(t)}{n!} (\Lambda)^{3-\beta} (\zeta_+)^n \zeta_-$$

- As we see, even before imposing symmetries, we only have marginal terms – only logarithmic time dependence possible in the IR.
- This is Weinberg's classic result that divergences in the IR can be at most logarithmic.
- We have solved the power counting problem Now let us impose our symmetries!

Symmetries of ζ_+, ζ_-

• The important symmetry for our purpose is the dilatation

$$\zeta(x) \to \zeta(xe^{\lambda}) - \lambda$$

• In the soft limit this breaks up as

$$\zeta_+(x) + (aH)^{-\beta}\zeta_-(x) \to (\zeta_+(xe^{\lambda}) - \lambda) + (aH)^{-\beta}\zeta_-(x)$$

• Thus, we have

$$\zeta_+(x) \to \zeta_+(xe^{\lambda}) - \lambda \qquad \qquad \zeta_-(x) \to \zeta_-(xe^{\lambda})$$

Symmetries of ζ_+, ζ_-

- Then, our action does not have any marginal term $\ \zeta_+^n \zeta_-$
- Rather, all terms should come with either spatial or temporal derivatives.
- Since we need 2 spatial derivatives, both of these give $\mathcal{O}\left(\frac{k}{aH}\right)^2$ suppression.

Action has only irrelevant terms?

- So, in the IR, all terms are suppressed by $\mathcal{O}(\lambda^2)$.
- The argument is not complete. Our action is gauge fixed. Thus, we can have non-local terms that are also allowed.
- We can put in terms of the form $a^2\partial^{-2}$, which seem to boost relevance of terms. For example, in the UV, we have the three point interaction :

$$\mathcal{L} \supset a^3(t) rac{\epsilon^2}{c_s^4} \dot{\zeta} \left(rac{\partial_i}{\partial^2} \dot{\zeta}
ight) \partial^i \zeta$$
 Maldacena

Non-local terms ARE suppressed

- The key idea is that dilatation implies that in the $q \to 0\,$ limit, we describe an unperturbed background.

Non-local terms ARE suppressed

- The key idea is that dilatation implies that in the $q \to 0\,$ limit, we describe an unperturbed background.
- So a term of the form $\mathcal{L} \supset a^{3+100}(t) \epsilon \zeta \partial^{-100}(\partial_i \zeta \partial_i \zeta)$ naively would not die away in the soft limit. Rather, this behaves naively as $q^2 \times q^{-100} = q^{-98}$ and hence grows in the $q \to 0$ limit.

Non-local terms ARE suppressed

• Thus, we need more factors of momenta in numerator of any operator. Thus, in soft limit the operators are guaranteed to be of order \sqrt{n} , n > 0

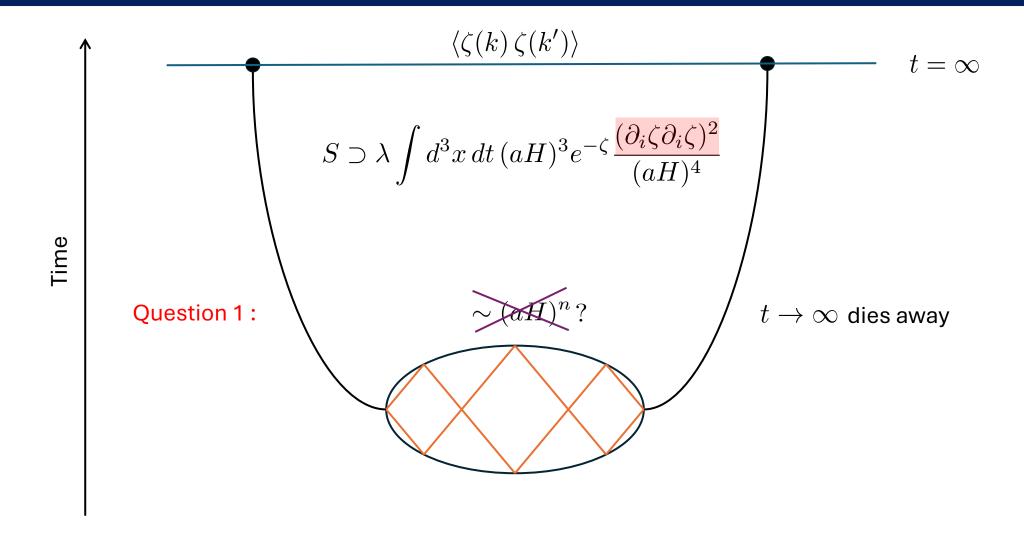
$$\left(\frac{\kappa}{aH}\right)$$

• A more formal argument can be given by constructing the charge operator, but the physics is the same.

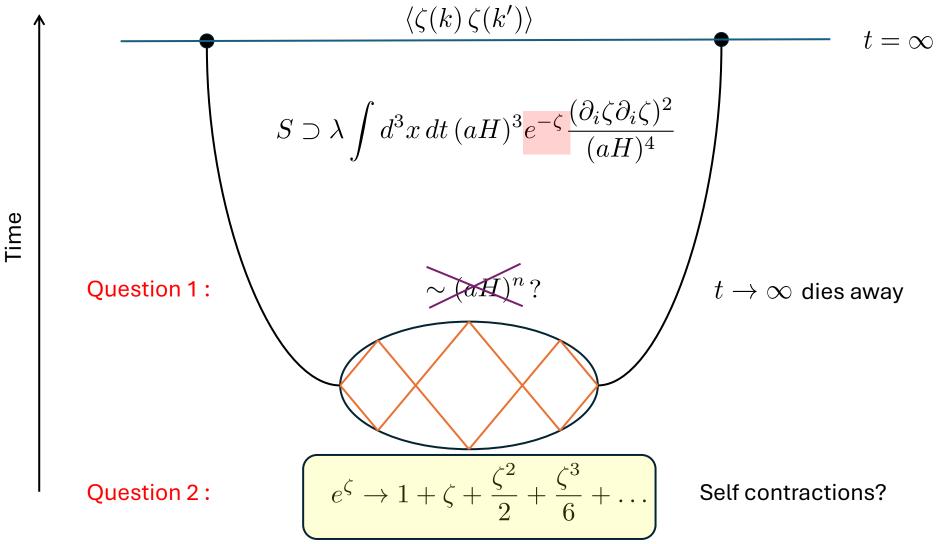
Action has only irrelevant terms

- With this, we have shown that any interaction term in the theory is irrelevant. Hence, ζ_+ does not generate time dependence in the theory.
- So, is the IR theory completely trivial, with no interesting behavior? What does the effective theory predict?

The worry



The worry



Time dependence in composite operators

- Actually, composite operators do generate time dependence. Operator mixing is $\zeta_+^n\to \mathbb{1}.$
- ζ_+ has scaling dimension 0. ζ_- has scaling dimension 3. So only powers of ζ_+ can mix.
- This tells us that $e^{\zeta} \rightarrow e^{\zeta_+}$ can generate time dependence.

e^{ζ} in the IR

- We have that $e^{\zeta_+} = 1 + \zeta_+ + \frac{\zeta_+^2}{2} + \frac{\zeta_+^3}{6} + \dots$
- Now, we can consider various self contractions, and consider divergences due to all of them.
- What we get is a nice result The various Wick contractions of e^{ζ_+} actually give a renormalized e^{ζ_+} , that is, e^{ζ_+} is an eigenvector under RG, and acquires an anomalous scaling dimension :

$$e^{\zeta_{+}} = Z(t_{*})e^{\zeta_{+}}$$
 $\frac{d}{dt^{*}}e^{\zeta_{+}} = e^{\zeta_{+}}\sum_{n\geq 2}\frac{\gamma_{n}}{n!}$

where t_* is some fixed reference time, equivalent to μ in MS bar.

Loops build up probability distribution

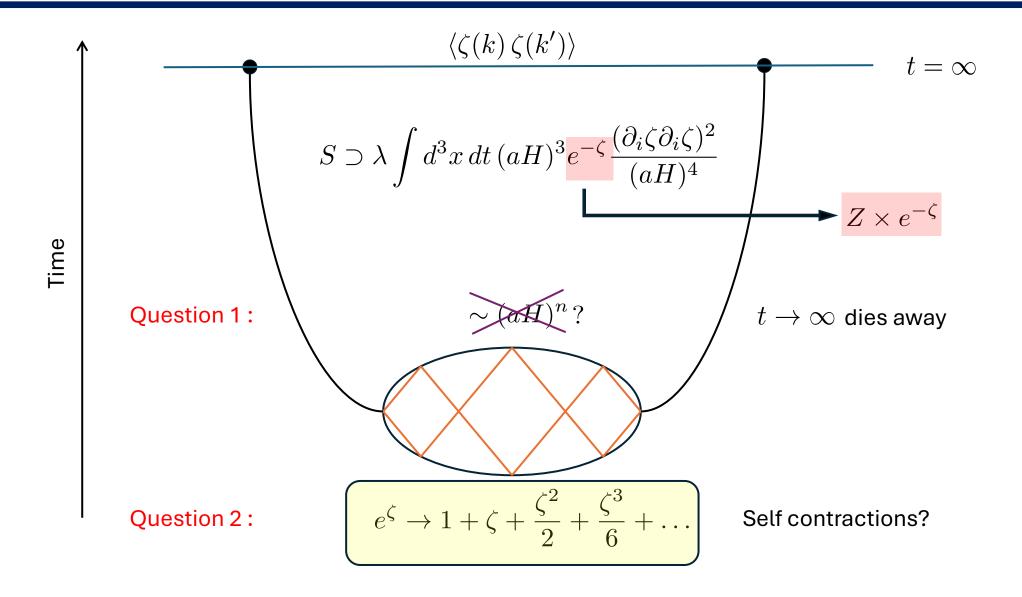
$$\frac{d}{dt^*}e^{\zeta_+} = e^{\zeta_+} \sum_{n \ge 2} \frac{\gamma_n}{n!}$$

• The coefficients γ_n are the cumulants of the probability distribution of ζ at any point x.

•
$$\gamma_2 = \Delta_{\zeta} = \frac{H(t_*)^4}{4\pi^2 M_{pl}^2 \dot{H}(t_*)}$$
 encodes the standard deviation.

• The higher γ_n encode the higher moments of the probability distribution.

The worry



ζ retains symmetries to all orders

- The first nice thing this tells us that after taking loops into account e^{ζ_+} renormalizes into itself. Hence, ζ_+ and thus ζ still retains all its non-linear symmetries in the IR.
- This is another way to see quantum loops cannot change the time independence of ζ .
- Moreover, the time dependence of e^{ζ_+} encodes the time dependence of the volume of the Universe at the end of inflation.

Volume fluctuations in the IR

- In our gauge, we have chosen inflation to end at the same time everywhere. The inflaton is given by $\phi=\phi(t)$ with no perturbations.
- We have $g_{ij} = a^2(t)e^{2\zeta}\delta_{ij}$
- Thus, time dependence of e^{ζ} is just telling us that a(t), and hence the volume of the Universe, gets an additional statistical time dependence due to random walk of ζ .
- This fact encodes that the quantum nature of the perturbations give rise to statistical nature of the volume of reheating surface.

EFT accomplishments, and matching onto UV

- So, we have used EFT techniques to understand the effect of loops in the IR and understood how to regulate loops in the soft limit.
- To understand the effects of loops in the UV, as well as use a convenient regulator to match the EFT to the IR, we will use a convenient Mellin representation.
- Mellin has the advantage of doing the full theory loops in manifestly dim reg way.

MELLIN REPRESENTATION

Introduction

• The Mellin representation allows us to write down Hankel functions as power series in the argument :

$$i\pi e^{i\pi\nu/2}H_{\nu}^{(1)}(z) = \int_{c-i\infty}^{c+i\infty} \frac{ds}{2\pi i}\Gamma\left(s+\frac{\nu}{2}\right)\Gamma\left(s-\frac{\nu}{2}\right)\left(-\frac{iz}{2}\right)^{-2s}$$

Introduction

• The Mellin representation allows us to write down Hankel functions as power series in the argument :

$$i\pi e^{i\pi\nu/2}H_{\nu}^{(1)}(z) = \int_{c-i\infty}^{c+i\infty} \frac{ds}{2\pi i}\Gamma\left(s+\frac{\nu}{2}\right)\Gamma\left(s-\frac{\nu}{2}\right)\left(-\frac{iz}{2}\right)^{-2s}$$

- The integral is essential a sum over all the poles of the Γ function :

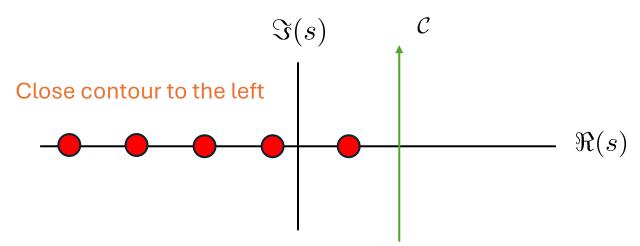


Introduction

• We turned the Hankel function into a sum of powers! This will accomplish goal of doing integrals of power laws.

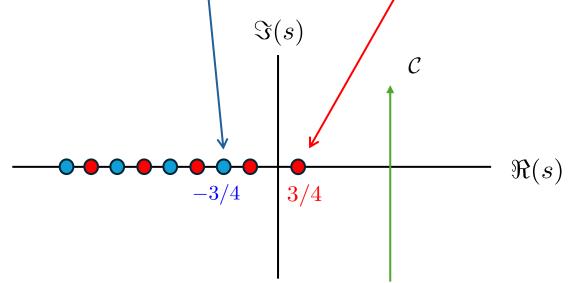
$$i\pi e^{i\pi\nu/2}H_{\nu}^{(1)}(z) = \sum \operatorname{Res}\left[\Gamma\left(s+\frac{\nu}{2}\right)\Gamma\left(s-\frac{\nu}{2}\right)\left(-\frac{iz}{2}\right)^{-2s}\right]$$

• We always close contours to the left!



• Useful because $\zeta(k\tau) \propto \tau^{\nu} \mathcal{H}_{\nu}^{(1)}(-k\tau)$, $\nu = \frac{3}{2} + \frac{(n_s - 1)}{2}$. Mellin gives $\zeta(k\tau) = -\frac{1}{2\sqrt{\pi}}(-\tau)^{\frac{3+n_s-1}{2}} \int \frac{ds}{2\pi i} \Gamma\left(s + \frac{3+(n_s-1)}{4}\right) \Gamma\left(s - \frac{3+(n_s-1)}{4}\right) \left(-\frac{ik\tau}{2}\right)^{-2s}$

- Useful because $\zeta(k\tau) \propto \tau^{\nu} \mathcal{H}_{\nu}^{(1)}(-k\tau)$, $\nu = \frac{3}{2} + \frac{(n_s 1)}{2}$. Mellin gives $\zeta(k\tau) = -\frac{1}{2\sqrt{\pi}}(-\tau)^{\frac{3+n_s-1}{2}} \int \frac{ds}{2\pi i} \Gamma\left(s + \frac{3+(n_s-1)}{4}\right) \Gamma\left(s - \frac{3+(n_s-1)}{4}\right) \left(-\frac{ik\tau}{2}\right)^{-2s}$
- The Γ function pole structure becomes



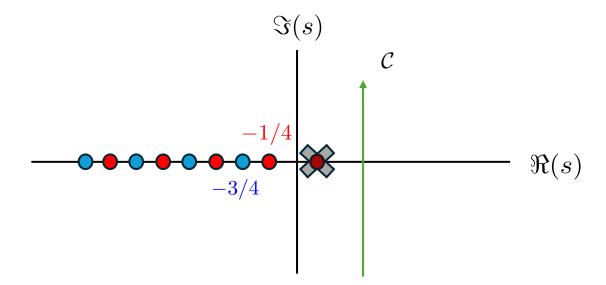
• Now, $\dot{\zeta}$ does something special

$$\dot{\zeta} = \frac{1}{\sqrt{\pi}} (-\tau)^{\frac{3+n_s-1}{2}} \int \frac{ds}{2\pi i} \Gamma\left(s + \frac{3+(n_s-1)}{4}\right) \Gamma\left(s + \frac{1+(n_s-1)}{4}\right) \left(-\frac{ik\tau}{2}\right)^{-2s}$$

• Now, $\dot{\zeta}$ does something special

$$\dot{\zeta} = \frac{1}{\sqrt{\pi}} (-\tau)^{\frac{3+n_s-1}{2}} \int \frac{ds}{2\pi i} \Gamma\left(s + \frac{3+(n_s-1)}{4}\right) \Gamma\left(s + \frac{1+(n_s-1)}{4}\right) \left(-\frac{ik\tau}{2}\right)^{-2s}$$

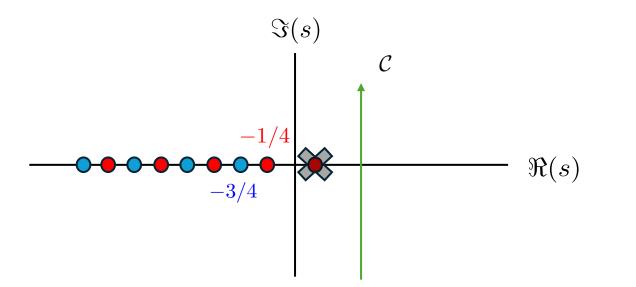
• We have removed the only positive pole in the problem!



• Now, $\dot{\zeta}$ does something special

$$\dot{\zeta} = \frac{1}{\sqrt{\pi}} (-\tau)^{\frac{3+n_s-1}{2}} \int \frac{ds}{2\pi i} \Gamma\left(s + \frac{3+(n_s-1)}{4}\right) \Gamma\left(s + \frac{1+(n_s-1)}{4}\right) \left(-\frac{ik\tau}{2}\right)^{-2s} (1-t)^{-2s} (1-t)^{-2s}$$

• We have removed the only positive pole in the problem!



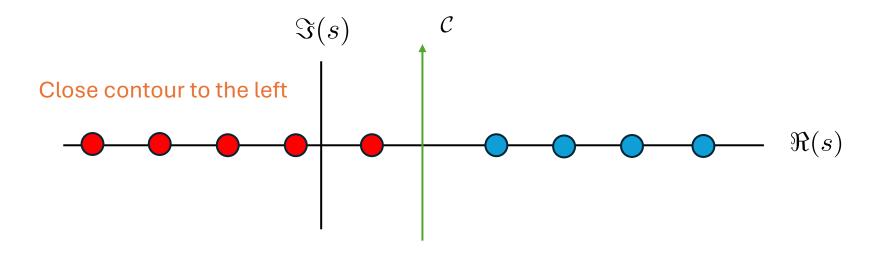
In the $\tau \to 0$ limit, we have that $\dot{\zeta} \to 0$

- In generic loop momenta, we have a bunch of ζ floating around. Each ζ comes with its own poles.
- Now, when we do loops, we enforce constraints on the poles. This comes from the momenta integrals, which is of the form

$$\int \frac{d^3p}{(2\pi)^3} p^{-2(s_3+s_4+s_5+s_6)} \to -\frac{i}{2\pi} \delta\left(\frac{3}{2} - (s_3+s_4+s_5+s_6)\right)$$

"Only
$$\int \frac{d^3p}{(2\pi)^3} \frac{1}{p^3}$$
 should survive"

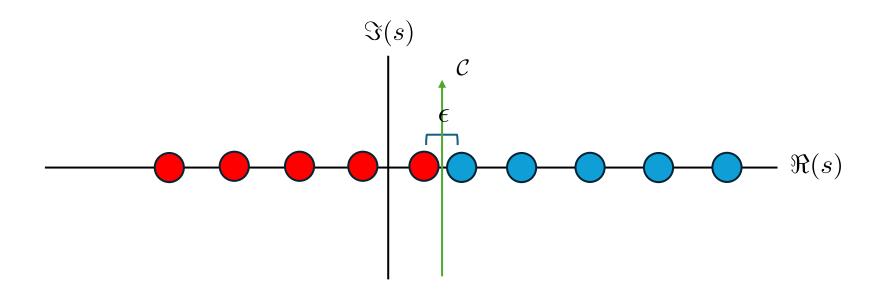
- This shifts some of the poles to the right!
- So generically, we get left poles and right poles. Right poles not an issue, because our prescription doesn't pick them up.



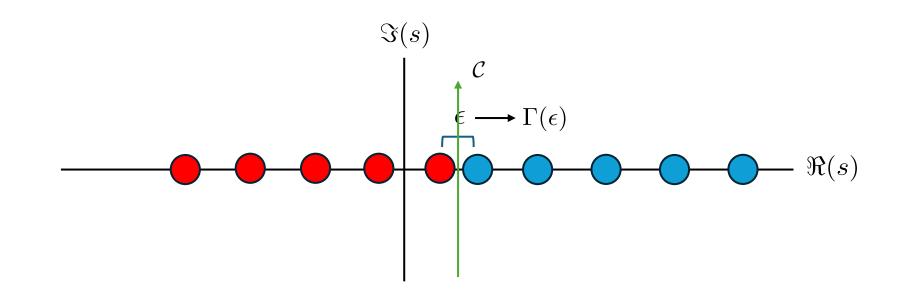
Divergences in Mellin

• Unless ... These right poles overlap with the left poles.

- Unless ... These right poles overlap with the left poles.
- When we have colliding poles, divergences start showing up, because we cannot separate the left and the right poles.



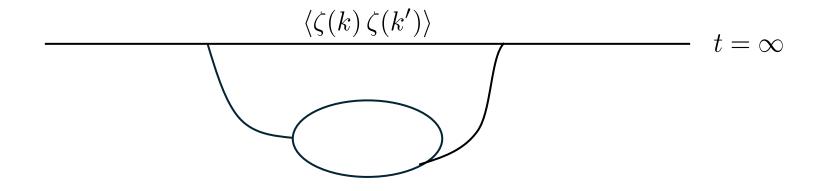
• Since these poles are due to Γ functions, Cauchy's theorem gives us that evaluating residue of one pole gives us a $\Gamma(\epsilon)$ pole.



Calculating loops in Mellin

- So in Mellin, divergences becomes a statement of colliding poles.
- Now, we take a one loop correction to the power spectrum. Let us take the sample interaction term

$$H_{int} = -\lambda a^3 H^{-3} \dot{\zeta}^3$$



Calculating loops in Mellin

- Then we have that loop corrections to momenta is given by $\langle \zeta(k)\zeta(k')\rangle = -\lambda^2 \int_{-\infty}^{\tau} d\tau_1 a^4(\tau_1) \int_{-\infty}^{\tau_1} d\tau_2 a^4(\tau_2) \int \frac{d^3k}{(2\pi)^3} \times \bar{\zeta}(k,\tau) \bar{\zeta}(k',\tau) \dot{\bar{\zeta}}^*(k,\tau_1) \dot{\bar{\zeta}}^*(k',\tau_2) \dot{\bar{\zeta}}(p,\tau_1) \dot{\bar{\zeta}}^*(p,\tau_2) \dot{\bar{\zeta}}(p-k,\tau_1) \dot{\bar{\zeta}}^*(k-p,\tau_2) + 3 \text{ other terms}$
- We can see that in Mellin, we will have power law integrals over both p, τ

$$\zeta = -\frac{1}{2\sqrt{\pi}}(-\tau)^{\frac{3+n_s-1}{2}} \int \frac{ds}{2\pi i} \Gamma\left(s + \frac{3+(n_s-1)}{4}\right) \Gamma\left(s - \frac{3+(n_s-1)}{4}\right) \left(-\frac{ik\tau}{2}\right)^{-2s}$$

Calculating loops in Mellin

- Then we have that loop corrections to momenta is given by $\langle \zeta(k)\zeta(k')\rangle = -\lambda^2 \int_{-\infty}^{\tau} d\tau_1 a^4(\tau_1) \int_{-\infty}^{\tau_1} d\tau_2 a^4(\tau_2) \int \frac{d^3k}{(2\pi)^3} \times \bar{\zeta}(k,\tau) \bar{\zeta}(k',\tau) \dot{\bar{\zeta}}^*(k,\tau_1) \dot{\bar{\zeta}}^*(k',\tau_2) \dot{\bar{\zeta}}(p,\tau_1) \dot{\bar{\zeta}}^*(p,\tau_2) \dot{\bar{\zeta}}(p-k,\tau_1) \dot{\bar{\zeta}}^*(k-p,\tau_2) + 3 \text{ other terms}$
- Substituting, we get

$$\begin{split} \langle \zeta(k)\zeta(k')\rangle &= -\lambda^2 \zeta(k,\tau)\zeta(k',\tau) \int_{-\infty}^{\tau} d\tau_1 \, a^4(\tau_1) \int_{-\infty}^{\tau_1} d\tau_2 \, a^4(\tau_2) \int \frac{d^3p}{(2\pi)^3} \\ &\left(\prod_{i=1}^6 \int \frac{ds_i}{(2\pi i)} \Gamma\left(s_i + \frac{3 + (n_s - 1)}{4}\right) \Gamma\left(s_i + \frac{1 + (n_s - 1)}{4}\right) \left(-\frac{ip_i\tau_i}{2}\right)^{-2s_i}\right) \\ &\times \frac{1}{\pi^3} (-\tau_1)^{\frac{9+3(n_s - 1)}{2}} (-\tau_2)^{\frac{9+3(n_s - 1)}{2}} (-1)^{-2s_1 - 2s_2 - 2s_4 - 2s_6} \end{split}$$

• Calculating the loop integrals is now easy, since we get power laws. The internal momenta integral is of the form

$$\int \frac{d^3p}{(2\pi)^3} p^{-2(s_3+s_4)} (k-p)^{-2(s_5+s_6)}$$

- Taking internal momenta to be large, $p\gg k$,

$$\int \frac{d^3 p}{(2\pi)^3} p^{-2(s_3+s_4+s_5+s_6)} \to -\frac{i}{2\pi} \delta\left(\frac{3}{2} - (s_3+s_4+s_5+s_6)\right)$$

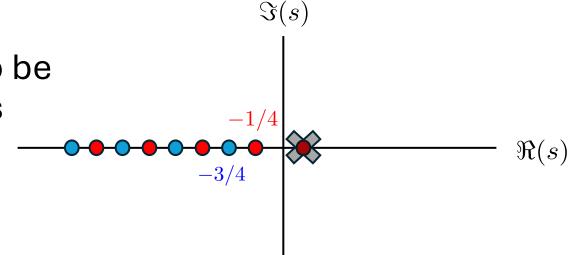
• We check whether poles collide or not. In our case, it turns out to not.

Time integral

• Looking at the time integrals, we see that we get

$$\langle \zeta(k,\tau)\zeta(k',\tau)\rangle \propto \frac{(k\tau)^{-2(s_1+s_2)}}{s_1+s_2}$$

- Now, remember that every pole for $\dot{\zeta}$ was on the negative real axis.
- So the τ dependence is supposed to be a positive power law, and hence dies in the $\tau \to 0$ limit. —

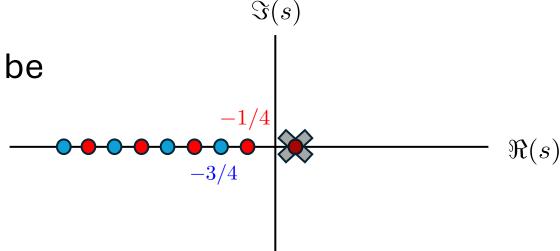


Time integral

• Looking at the time integrals, we see that we get

$$\langle \zeta(k,\tau)\zeta(k',\tau)\rangle \propto \frac{(k\tau)^{-2(s_1+s_2)}}{s_1+s_2}$$

- Now, remember that every pole for $\dot{\zeta}$ was on the negative real axis.
- So the τ dependence is supposed to be a positive power law, and hence dies in the $\tau \to 0$ limit. —
- So, Mellin sets this integral to 0!



We do not get divergences

- Thus, what we learn is that this term does not contribute to RG, and hence cannot give time dependence in the IR.
- This is what we learnt from the EFT method as well.
- Moreover, Mellin sets terms to 0 in a similar way that dim reg sets terms to 0 in flat spacetime.

- We use EFT to show that using symmetries and power counting, we can show that ζ is time independent to all orders.
- We study the IR effects of loops and show that the natural quantity that does get modified through loops is the spacetime volume.
- We introduce the Mellin representation to regulate loops in the UV. We use Mellin to show ζ time independence, and elucidate how it reduces the problem to calculating scaleless integrals.

THANK YOU FOR YOUR TIME!! ③