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INTRODUCTION



Review of inflationary perturbations

• During the era of inflation, we want to study metric perturbations 
that are produced due to quantum fluctuations. 



Review of inflationary perturbations

• During the era of inflation, we want to study metric perturbations 
that are produced due to quantum fluctuations. 

• A convenient choice to describe these fluctuations is the 
comoving gauge, where the inflaton is fixed                   and acts as 
the clock, and all the perturbations are absorbed in the metric. 

• We represent the perturbations as    , and the metric is given byζ

φ = φ(t)

gij = a2(t)e2ζ(x,t)δij



Conservation of     - Intuition

• We expect      to be conserved on super horizon scales.

• Conservation important for modern cosmological program – sets 
the initial conditions for the rest of cosmic evolution.

• Symmetries of      confirm this intuition – in the soft limit      should 
be equivalent to rescaling the coordinates

ζ

ζ

ζ ζ



Conservation of     - Technical Details

• But, it is technically hard to see – because of loops. 

• It has been proven to all orders. 

• The arguments are diagrammatic in nature.

Senatore and Zaldarriaga; 
Assassi, Baumann, Green
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The worry
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e
t = ∞

⟨ζ(k) ζ(k′)⟩

S ⊃ λ

∫
d3x dt (aH)3e−ζ (∂iζ∂iζ)

2

(aH)4



The worry

Ti
m

e
t = ∞

⟨ζ(k) ζ(k′)⟩

∼ (aH)n ?Question 1 : t → ∞ can give time dependence

S ⊃ λ

∫
d3x dt (aH)3e−ζ (∂iζ∂iζ)
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The worry

Ti
m

e
t = ∞

⟨ζ(k) ζ(k′)⟩

∼ (aH)n ?

eζ → 1 + ζ +
ζ2

2
+

ζ3

6
+ . . . Sure, derivatives tend to 0, but 

what about this object?

Question 1 :

Question 2 :

t → ∞ can give time dependence

S ⊃ λ

∫
d3x dt (aH)3e−ζ (∂iζ∂iζ)

2

(aH)4



Regulators

• What makes these calculations more confusing is the lack of 
obviously nice regulators. 

• Nice regulators make our lives a lot easier by only keeping track of 
as much physics as possible, while throwing away scheme 
dependent things as much as possible. 

• Moreover, we want to choose regulators and schemes that make 
our life as simple as possible. However, in de Sitter, this choice is 
not obvious.



Power of Regulators

• Consider a simple one-loop diagram for a       
scalar in flat spacetime.

• Action    ,       some EFT scale

• If we use UV cutoff, loop result gives

• Makes decoupling of scales hard to see. Really, this term should 
be absorbed by a local counterterm, and gives no RG/logs. 

Λ

k

k

k

k

p

p

Lint =
g

Λ4
(∂µφ∂µφ)2

g2k4

Λ8

∫ ΛUV d4p

(2π)4
→ g2

k4

Λ4

Λ4
UV

Λ4



Power of Regulators

• Consider a simple one-loop diagram for a       
scalar in flat spacetime.

• Action    ,       some EFT scale

• Dim reg sets it to 0, making no RG obvious   

ΛLint =
g

Λ4
(∂µφ∂µφ)2

k

k

k

k

p

p

g2k4

Λ8

∫
d4p

(2π)4
→ 0



Dim reg issues for in-in correlators

• In our in-in picture, dim reg isn’t as great. In flat space, consider 
∫

d3p

(2π)3
pneimpt



Dim reg issues for in-in correlators

• In our in-in picture, dim reg isn’t as great. In flat space, consider 

• Now for         , we get a Power Law divergence, which dim reg 
automatically sets to 0, so no logs

t = 0

∫
d3p

(2π)3
pn = 0

∫
d3p

(2π)3
pneimpt



Dim reg issues for in-in correlators

• In our in-in picture, dim reg isn’t as great. In flat space, consider 

• But, if we first integrate    , we get

• Now taking     limit gives a divergence. The original divergence 
therefore was never really regulated.

∫
d3p

(2π)3
pneimpt

∫
d3p

(2π)3
pneimpt−ϵmp|t|

→
1

2π2

Γ[3 + n]

(−imt)3+n

p

t → 0



Try to understand loops and IR divergences

• So, we want to develop techniques to make the physics in the IR 
more manifest. 

• This goes hand-in-hand with understanding how to regulate loops 
in a more convenient way.



Game plan

• Two ways to accomplish these : 
•  Writing an EFT description for the long wavelength modes – that 

will make the IR behavior more manifest, as well as offer a 
convenient way of regulating loops in the IR. 

• For the full theory, introduce the Mellin representation as a 
technique for calculating loops in a dim reg fashion. An added 
advantage that it is a natural scheme to match onto the EFT. 



EFFECTIVE FIELD THEORY



Overview

• We want to construct an effective theory for the metric modes      
that reproduce the IR behavior (in particular divergences)

• In generic models we have that      propagates with a speed of 
sound       . 

• For the purposes of our discussion, we will set   . It doesn’t 
change any of our results, and makes it conceptually simpler to 
follow.

ζ

ζ
cs ≤ 1

cs = 1



Technical motivation for constructing EFT

• The technical motivation starts with the idea that the IR logs we 
see are of the form          . 

• We want to understand this as a statement similar to                         
in flat spacetime.

•  So, we want to construct an EFT with a (comoving) UV cutoff 
              , thus capturing the effects of these logs.

log p2/Λ2
UV

k/(aH)

ΛUV = a(t)H(t)
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k ≪ aH

k ∼ aH

k ≫ aH
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e

Full Calculation
(Runs over multiple scales)

k ≪ aH

k ∼ aH

k ≫ aH



Ti
m

e

Effective Field Theory

Integrate out

ΛUV = aH

k ≪ aH

k ∼ aH

k ≫ aH



What we want in our theory - 1

• We want to power count in   ,  

• Accomplishes first goal - loop integrals are now nice scaleless 
power laws which can be regulated in a dim reg fashion

∫

d3k

(2π)3
k
n
e
ikτ

→

∫

d3k

(2π)3
k
n

(

1 + ikτ +
(ikτ)2

2
+ . . .

)

→ 0

λ =

k

aH
= kτ τ = (−aH)−1



What we want in our theory - 2

• We want to write the theory so that IR effects are obvious by 
looking at the action. Loop calculations only necessary to 
calculate factors of 2s and     s.

• The theory that does this is Soft de Sitter EFT (SdSET)

π

Cohen and Green



SOFT de SITTER EFT



Identify degrees of freedom

• We start with the UV equations of motion

• In the     limit, we identify the soft degrees of freedom

• We want to describe the fluctuations around these classical long 
wavelength solutions

ζ ∝ τ0 ζ ∝ τ3+2ϵ+η

k → 0

τ = (−aH)−1

∂2

τ
ζ −

1

τ
(1 + ϵ)(2 + η)∂τ ζ + k2ζ = 0

ϵ, η slow roll parameters



Understand degrees of freedom from UV

• To see the structure of the EFT degrees of freedom, we take the 
solutions of the UV equations of motion

τ = (−aH)−1ζ = (1 + ikτ)e−ikτ



Understand degrees of freedom from UV

• To see the structure of the EFT degrees of freedom, we take the 
solutions of the UV equations of motion

• We take the superhorizon limit        Expand in  

Describe these two degrees of freedom

kτ ≪ 1

ζ =

(

1 +
k2τ2

2
+ . . .

)

− i
k3τ3

3
(1 + . . .)

ζ = (1 + ikτ)e−ikτ
τ = (−aH)−1



Understand degrees of freedom from UV

• To see the structure of the EFT degrees of freedom, we take the 
solutions of the UV equations of motion

• We take the superhorizon limit        Expand in  kτ ≪ 1

ζ = (1 + ikτ)e−ikτ
τ = (−aH)−1

ζ =

ζ =

(

1 +
k2τ2

2
+ . . .

)

−i
k3τ3

3
(1 + . . .)

ζ+ τ3ζ
−

+



Properties of 

•             act as scaling operators

•       scales as , while        scales as 
•      and make explicit our intuition of power counting. 
• To derive our EFT action, we can just expand in the soft limit. Just 

plug                  , and go.  
• Correcting for slow roll factors, we substitute        

ζ+ ζ
−

ζ+

[k]0

ζ
−

[k]3

ζ = ζ+ + (aH)−3ζ
−

ζ+, ζ−

ζ = ζ+ + (aH)−βζ
−

β = 3 + 2ϵ+ η

,

= 3− (ns − 1)

ζ+, ζ−

x → λ−1x k → λk ζ+(λk) → ζ+(k) ζ
−
(λk) → λ3ζ

−
(k)



EFT free action 

• Goal now is to write down the action in terms of 

• Since we have two degrees of freedom, we expect to get a first 
order equation for ζ+, ζ−

ζ+, ζ−



EFT free action 

• Goal now is to write down the action in terms of 

• Since we have two degrees of freedom, we expect to get a first 
order equation for ζ+, ζ−

ζ+, ζ−

S = −6M2
pl

∫

d3x dt (H∗)
−2ϵ∗(k∗)

−2ϵ−η

[

ζ̇+ζ−

]



EFT Properties and Inputs

• We see that        and   are conjugate momenta of each other. 

• The EFT is supplemented by initial conditions, which describe the 
statistics of       at horizon crossing. 

ζ+ ζ
−

ζ+, ζ−

⟨ζ−ζ−⟩IC =
H4

∗

4M2
plḢ∗

k3

9

(

k

k∗

)2ϵ+η

⟨ζ+ζ+⟩IC =
H4

∗

4M2
plḢ∗

1

k3

(

k∗

k

)2ϵ+η

[ζ+(x), ζ−(y)] = −

1

6M2
pl(H∗)−2ϵ∗(k∗)−2ϵ−η

δ3(x− y)



Time dependence      RG 

• Following the time dependence of     after horizon crossing is 
equivalent to following the time dependence of        in the EFT.
• Time dependence is equivalent to RG. This is because our UV 

cutoff is        . Hence, our RG equations are of the form 

• Using      , we see that the RG equations are written 
in the form 

ζ
ζ+

ΛUV = aH

ΛUV = aH = e
Ht

↔

ΛUV

d

dΛUV

O =
d

d logΛUV

O = 0

∂

∂t
O = γOO



Time dependence      RG 

• So, our goal is reduced to something simple. Write down the EFT, 
based on symmetries and power counting. 

• Check whether EFT produces any marginal or relevant terms.

• If not, we can make an all order statements, including loops, 
about the time dependence of ζ+

↔



Interaction terms

• A generic interaction term can be written as 

S ⊃

∫
d3x dt

cn(t)

n!m!
(Λ)3−mβ(ζ+)

n(ζ
−
)m



Properties

• A generic interaction term can be written as 

• So, the scaling dimension of this operator is  
• Measure scales as  
• Units made up by
•     captures slow roll effects, provides additional scaling like                      

                  .

mβ

[d3x] = [k]−3

cn(t)

S ⊃

∫
d3x dt

cn(t)

n!m!
(Λ)3−mβ(ζ+)

n(ζ
−
)m

(aH)ϵ, (aH)η

Λ = a(t)H(t)

[k]0

Scales as

Scales as

[k]β



How to power count operators

• A generic interaction term can be written as 

• Power counting means that the term contributes 
(

k

aH

)mβ−3

=

m = 0

m = 1

m > 1

relevant

marginal

irrelevant

S ⊃

∫
d3x dt

cn(t)

n!m!
(Λ)3−mβ(ζ+)

n(ζ
−
)m

β = 3− (ns − 1) ≈ 3

(

k

aH

)3(m−1)−3(ns−1)



How to power count operators

• A generic interaction term can be written as 

• Moreover, any spatial derivative term power counts as 

• For time derivatives, we can use EOM. We have that both 

[ζ̇+] =

(

k

aH

)2

[ζ̇
−
] =

(

k

aH

)2

S ⊃

∫
d3x dt

cn(t)

n!m!
(Λ)3−mβ(ζ+)

n(ζ
−
)m

1

a
∂i →

k

aH



Leading order Interaction

• So, leading order interaction will be  

?S ⊃

∫
d3x dt

cn(t)

n!
(Λ)3(ζ+)

n



Leading order Interaction

• So, leading order interaction will be  

• Turns out not. This can be removed by an appropriate field 
redefinition of 

?

ζ
−

S ⊃

∫
d3x dt

cn(t)

n!
(Λ)3(ζ+)

n

ζ− → ζ− +
ncn

6(H∗)−2ϵ∗(k∗)−2ϵ−κn!
(Λ)3(ζ+)

n−1



Leading order Interaction

• The leading order term actually becomes

• As we see, even before imposing symmetries, we only have 
marginal terms – only logarithmic time dependence possible in 
the IR. 
• This is Weinberg’s classic result that divergences in the IR can be 

at most logarithmic.
• We have solved the power counting problem - Now let us impose 

our symmetries!

S ⊃

∫
d3x dt

cn(t)

n!
(Λ)3−β(ζ+)

nζ
−



Symmetries of 

• The important symmetry for our purpose is the dilatation

• In the soft limit this breaks up as 

• Thus, we have

ζ(x) → ζ(xeλ)− λ

ζ+(x) → ζ+(xe
λ)− λ ζ

−
(x) → ζ

−
(xeλ)

ζ+, ζ−

ζ+(x) + (aH)−βζ
−
(x) → (ζ+(xe

λ)− λ) + (aH)−βζ
−
(x)



Symmetries of 

• Then, our action does not have any marginal term 

• Rather, all terms should come with either spatial or temporal 
derivatives.

• Since we need 2 spatial derivatives, both of these give 
   suppression.

ζn+ζ−

O

(

k

aH

)2

ζ+, ζ−



Action has only irrelevant terms?

• So, in the IR, all terms are suppressed by .

• The argument is not complete. Our action is gauge fixed. Thus, we 
can have non-local terms that are also allowed.

• We can put in terms of the form          , which seem to boost 
relevance of terms. For example, in the UV, we have the three 
point interaction :

a
2
∂
−2

O(λ2)

L ⊃ a3(t)
ϵ2

c4s
ζ̇

(

∂i
∂2

ζ̇

)

∂iζ Maldacena



Non-local terms ARE suppressed

• The key idea is that dilatation implies that in the                limit, we 
describe an unperturbed background.

 

q → 0



Non-local terms ARE suppressed

• The key idea is that dilatation implies that in the                limit, we 
describe an unperturbed background.

• So a term of the form      naively would 
not die away in the soft limit. Rather, this behaves naively as             

       and hence grows in the       limit. 
 

q → 0

L ⊃ a3+100(t) ϵ ζ ∂−100(∂iζ∂iζ)

q
2
× q

−100
= q

−98
q → 0



Non-local terms ARE suppressed

• Thus, we need more factors of momenta in numerator of any 
operator. Thus, in soft limit the operators are guaranteed to be of 
order 

• A more formal argument can be given by constructing the charge 
operator, but the physics is the same.

(

k

aH

)n;n > 0



Action has only irrelevant terms

• With this, we have shown that any interaction term in the theory is 
irrelevant. Hence,       does not generate time dependence in the 
theory.

• So, is the IR theory completely trivial, with no interesting behavior? 
What does the effective theory predict? 

ζ+



The worry

Ti
m

e
t = ∞

⟨ζ(k) ζ(k′)⟩

∼ (aH)n ?Question 1 : t → ∞ dies away

S ⊃ λ

∫
d3x dt (aH)3e−ζ (∂iζ∂iζ)

2

(aH)4



The worry

Ti
m

e
t = ∞

⟨ζ(k) ζ(k′)⟩

∼ (aH)n ?

eζ → 1 + ζ +
ζ2

2
+

ζ3

6
+ . . . Self contractions?

Question 1 :

Question 2 :

t → ∞ dies away

S ⊃ λ

∫
d3x dt (aH)3e−ζ (∂iζ∂iζ)

2

(aH)4



Time dependence in composite operators

• Actually, composite operators do generate time dependence. 
Operator mixing is       . 

•       has scaling dimension 0.        has scaling dimension 3.  So only 
powers of        can mix.

• This tells us that        can generate time dependence. 

ζn+ → 1

ζ+ ζ
−

ζ+

e
ζ
→ e

ζ+



in the IR

• We have that    
• Now, we can consider various self contractions, and consider 

divergences due to all of them. 
• What we get is a nice result – The various Wick contractions of 

actually give a renormalized      , that is,     is an eigenvector under 
RG, and acquires an anomalous scaling dimension : 

d

dt∗
eζ+ = eζ+

∑

n≥2

γn
n!

e
ζ+ = Z(t∗)e

ζ+

t∗where       is some fixed reference time, equivalent to      in MS bar.µ

e
ζ

eζ+ = 1 + ζ+ +
ζ2+
2

+
ζ3+
6

+ . . .

e
ζ+

e
ζ+

e
ζ+



Loops build up probability distribution

• The coefficients       are the cumulants of the probability 
distribution of at any point    .

•                  encodes the standard deviation.

• The higher        encode the higher moments of the probability 
distribution.

d

dt∗
eζ+ = eζ+

∑

n≥2

γn
n!

γn

ζ x

γ2 = ∆ζ =
H(t∗)4

4π2M2

plḢ(t∗)

γn



The worry

Ti
m

e
t = ∞

⟨ζ(k) ζ(k′)⟩

∼ (aH)n ?

eζ → 1 + ζ +
ζ2

2
+

ζ3

6
+ . . . Self contractions?

Question 1 :

Question 2 :

t → ∞ dies away

S ⊃ λ

∫
d3x dt (aH)3e−ζ (∂iζ∂iζ)

2

(aH)4

Z × e
−ζ



retains symmetries to all orders

• The first nice thing this tells us that after taking loops into account                             
renormalizes into itself. Hence,       and thus     still retains all 

its non-linear symmetries in the IR. 

• This is another way to see quantum loops cannot change the time 
independence of     . 

• Moreover, the time dependence of         encodes the time 
dependence of the volume of the Universe at the end of inflation.

ζ

ζ

ζ

e
ζ+ ζ+

e
ζ+



Volume fluctuations in the IR

• In our gauge, we have chosen inflation to end at the same time 
everywhere. The inflaton is given by         with no 
perturbations.
• We have 
• Thus, time dependence of   is just telling us that     , and hence 

the volume of the Universe, gets an additional statistical time 
dependence due to random walk of    . 
• This fact encodes that the quantum nature of the perturbations 

give rise to statistical nature of the volume of reheating surface.

a(t)

gij = a2(t)e2ζδij

e
ζ

φ = φ(t)

ζ



EFT accomplishments, and matching onto UV

• So, we have used EFT techniques to understand the effect of 
loops in the IR and understood how to regulate loops in the soft 
limit. 

• To understand the effects of loops in the UV, as well as use a 
convenient regulator to match the EFT to the IR, we will use a 
convenient Mellin representation.

• Mellin has the advantage of doing the full theory loops in 
manifestly dim reg way.



MELLIN 
REPRESENTATION



Introduction

• The Mellin representation allows us to write down Hankel 
functions as power series in the argument :

iπe
iπν/2

H
(1)
ν (z) =

∫ c+i∞

c−i∞

ds

2πi
Γ
(

s+
ν

2

)

Γ
(

s−
ν

2

)

(

−

iz

2

)

−2s



Introduction

• The Mellin representation allows us to write down Hankel 
functions as power series in the argument :

• The integral is essential a sum over all the poles of the      function :

          

iπe
iπν/2

H
(1)
ν (z) =

∫ c+i∞

c−i∞

ds

2πi
Γ
(

s+
ν

2

)

Γ
(

s−
ν

2

)

(

−

iz

2

)

−2s

Γ

ℜ(s)

ℑ(s) C

Close contour to the left



Introduction

• We turned the Hankel function into a sum of powers! This will 
accomplish goal of doing integrals of power laws.

• We always close contours to the left!

          
ℜ(s)

ℑ(s) C

iπe
iπν/2

H
(1)
ν (z) =

∑

Res

[

Γ
(

s+
ν

2

)

Γ
(

s−
ν

2

)

(

−

iz

2

)

−2s ]

Close contour to the left



Connection to inflation

• Useful because       ,       . Mellin givesν =
3

2
+

(ns − 1)

2
ζ(kτ) ∝ τνH(1)

ν
(−kτ)

ζ(kτ) = −

1

2
√

π
(−τ)

3+ns−1

2

∫

ds

2πi
Γ

(

s+
3 + (ns − 1)

4

)

Γ

(

s−
3 + (ns − 1)

4

)(

−

ikτ

2

)

−2s



Connection to inflation

• Useful because                  ,       . Mellin gives

• The      function pole structure becomes 

ν =
3

2
+

(ns − 1)

2
ζ(kτ) ∝ τνH(1)

ν
(−kτ)

ζ(kτ) = −

1

2
√

π
(−τ)

3+ns−1

2

∫

ds

2πi
Γ

(

s+
3 + (ns − 1)

4

)

Γ

(

s−
3 + (ns − 1)

4

)(

−

ikτ

2

)

−2s

Γ

ℜ(s)

ℑ(s)

3/4−3/4

C

Γ Γ



Connection to inflation

• Now,       does something specialζ̇

ζ̇ =
1
√

π
(−τ)

3+ns−1

2

∫

ds

2πi
Γ

(

s+
3 + (ns − 1)

4

)

Γ

(

s+
1 + (ns − 1)

4

)(

−

ikτ

2

)

−2s



Connection to inflation

• Now,       does something special

• We have removed the only positive pole in the problem!

ζ̇

ζ̇ =
1
√

π
(−τ)

3+ns−1

2

∫

ds

2πi
Γ

(

s+
3 + (ns − 1)

4

)

Γ

(

s+
1 + (ns − 1)

4

)(

−

ikτ

2

)

−2s

ℜ(s)

ℑ(s)

−3/4

−1/4

C



Connection to inflation

• Now,       does something special

• We have removed the only positive pole in the problem!

ζ̇

ℜ(s)

ℑ(s)

−3/4

−1/4

In the                limit, we 
        have that  

τ → 0

ζ̇ → 0

ζ̇ =
1
√

π
(−τ)

3+ns−1

2

∫

ds

2πi
Γ

(

s+
3 + (ns − 1)

4

)

Γ

(

s+
1 + (ns − 1)

4

)(

−

ikτ

2

)

−2s

C



Divergences in Mellin

• In generic loop momenta, we have a bunch of    floating around. 
Each     comes with its own poles. 

• Now, when we do loops, we enforce constraints on the poles. This 
comes from the momenta integrals, which is of the form 

ζ
ζ

∫

d3p

(2π)3
p−2(s3+s4+s5+s6)

→ −
i

2π
δ

(

3

2
− (s3 + s4 + s5 + s6)

)

∫
d3p

(2π)3
1

p3“Only    should survive”



Divergences in Mellin

• This shifts some of the poles to the right! 

• So generically, we get left poles and right poles. Right poles not an 
issue, because our prescription doesn’t pick them up. 

ℜ(s)

ℑ(s) C

Close contour to the left



Divergences in Mellin

• Unless … These right poles overlap with the left poles. 



Divergences in Mellin

• Unless … These right poles overlap with the left poles. 

• When we have colliding poles, divergences start showing up, 
because we cannot separate the left and the right poles. 

ℜ(s)

ℑ(s)

C

ϵ



Divergences in Mellin

• Since these poles are due to     functions, Cauchy’s theorem gives 
us that evaluating residue of one pole gives us a  pole.  
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Calculating loops in Mellin

• So in Mellin, divergences becomes a statement of colliding poles.

• Now, we take a one loop correction to the power spectrum. Let us 
take the sample interaction term

Hint = −λa3H−3ζ̇3

⟨ζ(k) ζ(k′)⟩
t = ∞



Calculating loops in Mellin

• Then we have that loop corrections to momenta is given by

• We can see that in Mellin, we will have power law integrals over 
both 

⟨ζ(k)ζ(k′)⟩ =− λ2

∫
τ

−∞

dτ1a
4(τ1)

∫
τ1

−∞

dτ2a
4(τ2)

∫
d3k

(2π)3
×

ζ̄(k, τ)ζ̄(k′, τ) ˙̄ζ∗(k, τ1)
˙̄ζ∗(k′, τ2)

˙̄ζ(p, τ1)
˙̄ζ∗(p, τ2)

˙̄ζ(p− k, τ1)
˙̄ζ∗(k − p, τ2)

+ 3 other terms

p, τ

ζ = −

1

2
√

π
(−τ)

3+ns−1

2

∫

ds

2πi
Γ

(

s+
3 + (ns − 1)

4

)

Γ

(

s−
3 + (ns − 1)

4

)(

−

ikτ

2

)

−2s



Calculating loops in Mellin

• Then we have that loop corrections to momenta is given by

• Substituting, we get

⟨ζ(k)ζ(k′)⟩ =− λ2

∫
τ

−∞

dτ1a
4(τ1)

∫
τ1

−∞

dτ2a
4(τ2)

∫
d3k

(2π)3
×

ζ̄(k, τ)ζ̄(k′, τ) ˙̄ζ∗(k, τ1)
˙̄ζ∗(k′, τ2)

˙̄ζ(p, τ1)
˙̄ζ∗(p, τ2)

˙̄ζ(p− k, τ1)
˙̄ζ∗(k − p, τ2)

+ 3 other terms

⟨ζ(k)ζ(k′)⟩ = −λ2ζ(k, τ)ζ(k′, τ)

∫ τ

−∞

dτ1 a
4(τ1)

∫ τ1

−∞

dτ2 a
4(τ2)

∫

d3p

(2π)3
(

6
∏

i=1

∫

dsi

(2πi)
Γ

(

si +
3 + (ns − 1)

4

)

Γ

(

si +
1 + (ns − 1)

4

)(

−
ipiτi

2

)−2si
)

×
1

π3
(−τ1)

9+3(ns−1)
2 (−τ2)

9+3(ns−1)
2 (−1)−2s1−2s2−2s4−2s6



Momenta Loop integral

• Calculating the loop integrals is now easy, since we get power 
laws. The internal momenta integral is of the form

• Taking internal momenta to be large,     ,

• We check whether poles collide or not. In our case, it turns out to 
not.

∫
d3p

(2π)3
p−2(s3+s4)(k − p)−2(s5+s6)

∫

d3p

(2π)3
p−2(s3+s4+s5+s6)

→ −
i

2π
δ

(

3

2
− (s3 + s4 + s5 + s6)

)

p ≫ k



Time integral

• Looking at the time integrals, we see that we get 

• Now, remember that every pole for     was on the negative real axis.

• So the     dependence is supposed to be        
a positive power law, and hence dies       
in the       limit.

ζ̇
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τ

τ → 0

⟨ζ(k, τ)ζ(k′, τ)⟩ ∝
(kτ)−2(s1+s2)

s1 + s2



Time integral

• Looking at the time integrals, we see that we get 

• Now, remember that every pole for     was on the negative real axis.

• So the     dependence is supposed to be        
a positive power law, and hence dies       
in the       limit.
• So, Mellin sets this integral to 0!

ζ̇

ℜ(s)

ℑ(s)

−3/4

−1/4

τ

τ → 0

⟨ζ(k, τ)ζ(k′, τ)⟩ ∝
(kτ)−2(s1+s2)

s1 + s2



We do not get divergences

• Thus, what we learn is that this term does not contribute to RG, 
and hence cannot give time dependence in the IR. 

• This is what we learnt from the EFT method as well.

• Moreover, Mellin sets terms to 0 in a similar way that dim reg sets 
terms to 0 in flat spacetime. 



Conclusion

• We use EFT to show that using symmetries and power counting, 
we can show that     is time independent to all orders. 

• We study the IR effects of loops and show that the natural quantity 
that does get modified through loops is the spacetime volume.

• We introduce the Mellin representation to regulate loops in the UV. 
We use Mellin to show     time independence, and elucidate how it 
reduces the problem to calculating scaleless integrals.
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