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Does perturbation theory break in ultra slow roll (USR) inflation
primordial black holes (PBH) dark matter (DM) models?
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Examples of potentials for USR PBH DM
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Breakdown of perturbation theory in USR inflation?

Claim: a large enough tree-level primordial spectrum for PBH DM implies perturbation theory
breaks at CMB scales. Kristiano and Yokoyama, 2022 & 2023
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Breakdown of perturbation theory in USR inflation?

Claim: a large enough tree-level primordial spectrum for PBH DM implies perturbation theory

breaks at CMB scales. Kristiano and Yokoyama, 2022 & 2023
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Breakdown of perturbation theory in USR inflation?

Claim: a large enough tree-level primordial spectrum for PBH DM implies perturbation theory
breaks at CMB scales Kristiano and Yokoyama, 2022 & 2023

® Method: Primordial spectrum at one-loop with the 1n-1n formalism.

M2
® A single cubic interaction: H; i = 2P / dSQU € 77/ a2 C / CQ O_O_O

® UV divergence: Cut-off given by location of spectral peak
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Summary of the analysis we do

® Two-parameter piece-wise model of inflation.

1. Duration of USR phase: AN
2. Duration of transitions between SR and USR: § NV

e We study P¢(k) at all k using the in-in formalism
o J¢-gauge (¢ = 0)

® Include ll relevant cubic and quartic interactions, plus counterterms
® We use a cut-off to regularize the UV divergences

® Result: perturbation theory does not necessarily break in USR PBH DM models



Some key differences from previous works

e No complications with boundary terms thanks to the d¢-gauge (¢ = 0)

® We find that P¢ (k) explodes at one-loop 1n the limit 6N =0

® Previous analysis using a cutoft gave the cutoff a numerical value. Instead,
we regularize in the UV with appropriate counterterms



PBH dark matter

Abundance (Gaussian estimate)
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Two-parameter model
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Two-parameter model

V3 g ~ Av? O(T — Ty )

3
Val N when 0N — 0

9 1 772 77/
2
= | 3N |
T4 ( T aH)
Piece-wise constant

Equal to 9/4 in SR & USR

SR € USR SR
0N 0N
— —>
2
L. /
AN
0 0.5 1.5 2.5




Quantization of ¢

We work 1n the interaction picture:
o (5¢%—|—2al—](5¢;€—I-(]{?2—|—CL2V2)5¢/~C =0 (free hield)

3
® J¢p(z) = / (Qi)lg/g e (5¢k(7')ak + 5gb,ﬁ(7‘)aik) (with canonical comm. rel. )

0pn(T — —00) = e 7 /\/2ka? (Bunch-Davies b.c.)
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Action for fluctuations in the d¢-gauge (¢ = 0)
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® The interactions coming from the metric are suppressed by €
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Action for fluctuations in the d¢-gauge (¢ = 0)
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Two-point correlation of ¢ at late times
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Does perturbation theory (PT) break?
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(USR duration)
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Two examples of P
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In-1n formalism
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uv regularization

" UV Cutoff
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Counterterms for computing P
1. ¢% (1—|—5¢)¢R

2. Vo = Viao+ 0oV

0y and oV are functions of time
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Quartic

g 2 can be completely absorbed by o3¢

k? ! / / INS %20 ) dg
A {(wzm | @ Wale)soR () [ Gslaay( }

k” 2 2 L1208 12 R N5 a2
T (205 1600(r)P + 8 Im{o0i(r) [ dr'a(osk® +8)062| })

7)11 V4 (7_ k)

P (T, k) =

-1, d°p
by — By — ~a v4/( 190



Two time integrals:

Cubic

O_O_o

Becomes UV finite after removing the
points along the diagonal with the cutoft.

7+ = 7(1 £iw) prescription is key

® [f we had kept those points, there would be
a UV div. that cannot be absorbed by the

counterterms (different k dependence).

® We expect that in dim. reg. the difference
1s compensated by the finite part of the
counterterms.



0o(x))

Tadpoles

In general, they can contribute to the power spectrum, but we can remove

them using the counterterms, imposing (§¢(x)) = 0.
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Instantaneous transition limit (6N — 0) 1in both gauges

S = /degx M#a’e ((C’)2 — (GC)2 | Z,C’C2>

Interaction Hamiltonian 1n the interaction picture (the conjugate momentum only sees the free action):
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See also Firouzjahi, 2023

® Exact agreement between both gauges in the limit §N — O for the two-point function of ¢
® We also checked that the bispectrum of ( agrees in both gauges in the same limit.
7)% ''oc 1/0N?  removing the diagonal points

73%1 x 1 / ON not removing them (a different kind of regulator)



Limit £ —0

Pe =P + PE + P¢*

Tree-level, one-loop and counterterm contributions

to P (7, k) are all scale invariant in this limit

Do we find a difference between tree-level and one-loop 1n this limit?

Yes, but the freedom 1n the time-dependence
of the counterterms can keep ¢ constant




Summary and outlook

® Perturbation theory does not necessarily break in USR PBH DM models:

1. Duration of USR phase:
2. Duration of transitions between SR and USR:

® Modes that leave well before USR cannot be used to answer the question:

1. Scale invariance

2. Separation of scales



Summary and outlook

® The freedom 1n the time dependence of the “couplings” of the model (EFT
coetts.) 1s both:

1. A blessing: simplifies the calculation greatly

2. A curse: 1t prevents us from doing a full renormalization

1. Finite parts from counterterms

2. Show conservation of ¢ explicitly.

® What would be better: a complete calculation for a potential V' (¢) with a

symmetry preserving regularization scheme.

Lacking that, we have used P¢' ~ P! < P{ as a proxy for the
validity of perturbation theory:.



