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Inflation explains causally the small fluctuations we observe in the universe and the structures at large scales



Cosmological Perturbation Theory

Splitting of the full metric and of the matter fields (inflaton) into a background part and small perturbations:
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̂δϕ( ⃗x , t) quantised fluctuations

gμν(t) +

ϕ(t) +

homogeneous and isotropic background classical solution
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Dynamics of eternal inflation
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(σaH)−1

super-σH

sub-σH

k−1

N = log a

Sub-Hubble scales: small amplitude, cosmological perturbation theory

Super-Hubble scales: large perturbations, stochastic inflation

A. Starobinsky [1986] 

Φ̂(x)cg(N, ⃗x ) = ∫
d ⃗k

(2π)3/2
W̃ ( k

σaH ) [Φk(N) e−i ⃗k ⋅ ⃗x ̂a ⃗k + h . c . ] Φ = (ϕ1, π1, …ϕn, πn) πi = dϕi/dN

selects modes k < kσ = σaH

dΦcg

dN
= Fcl(Φcg) + G(Φcg) ⋅ ξStochastic classical theory for : Φcg

( G2 )ij =
d ln(σaH)

dN
𝒫Φi,Φj [σaH(Ni), Ni]

: classical background eom

 : white Gaussian noise

Fcl(Φcg)

ξ{ ⟨ξ( ⃗x , N)⟩ = 0, ⟨ξ( ⃗x , N) ξ( ⃗x ′ , N′ )⟩ = δ(N − N′ ) sin(σaH | ⃗x − ⃗x ′ | )
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Tsamis, Woodard [2005] 
T. Prokopec, N. Tsamis, and R. Woodard [2008]  
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It can be resummed to describe late time regimes where eventually perturbation theory breaks down

Tsamis, Woodard [2005] 
T. Prokopec, N. Tsamis, and R. Woodard [2008]  

It reproduces leading IR logarithms: factors of   that grow without bound as inflation proceeds  log a = Ht

Given the stochastic framework, how properties of cosmological perturbations  
(distribution functions, power spectrum etc.) are affected? 
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Sasaki, Stewart [1996]

Salopek, Bond [1990]

Separate universe approach

Universe : at large scales, collection of independent, locally homogeneous  
                  and isotropic patches

: amount of expansion in such universesN(t, ⃗x )

Wands, Malik, Lyth, Liddle [2000]
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Duration of inflation becomes a stochastic variable: 𝒩 Φ
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Φend

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]

Vennin, Starobinsky [2015]
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Distribution function for the duration of inflation ( first-passage time )
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Vennin, Starobinsky [2015]

Statistics of  from the statistics of :ζ 𝒩 ζcg( ⃗x ) = 𝒩( ⃗x ) − ⟨𝒩⟩
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χ(t, Φ) ≡ ⟨eit𝒩⟩ = ∫
∞

−∞
eit𝒩P(𝒩, Φ) d𝒩 P(𝒩, Φ) =

1
2π ∫

+∞

−∞
e−it𝒩 χ(t, Φ) dtℒ†

FP ⋅ χ(t, Φ) = − i t χ(t, Φ)

Characteristic function ( includes all moments )
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Useful trick: pole expansion

χ(t, Φ) = ∑
n

an(Φ)
Λn − i t

+ g(t, Φ)

P(𝒩, Φ) = ∑
n

an(Φ) e−Λn 𝒩 0 < Λ0 < Λ1 < ⋯Λn

Ezquiaga, Garcia-Bellido, Vennin (2020)
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This type of non-Gaussianities cannot be captured by perturbative parametrisations (such as the  expansion) fNL, gNL

Tail of the PDF of  (hence ) has an exponential fall-off behaviour𝒩 ζ
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Implications for PBHs

Mass fraction underestimated of orders of magnitude

Implications for inflationary models (amount of fine tuning, overproduction,….)

Consequences in light of observational constraints

β(M) = ∫
∞

ζc

P(ζ) dζAbundance of PBHs at formation: 

P(ζ)

ζζc

(Press-Schechter method)

PBHs are sensitive to the tails of distribution functions
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Beyond one-point distributions

Vennin, Ando [2021] 
Tada, Vennin [2021] 

Animali, Vennin [2024]

In the separate-universe framework, distance between two final Hubble patches encoded in the time at which  
their worldlines became independent

We can calculate correlations between durations of inflation (between curvature perturbation)  
at fixed physical distance 

We can extract multiple-point statistics 
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Extracting cosmological observables

N

(aH)−1

k−1

NendNend − Nbw

Nbw

Inflationary era Hot Big Bang

comoving 
scales Scale  crosses the Hubble radius at  k

N* = Nend − Nbw = Nend − log(aendH/k)

Φ

N

Φend

Φ*(k)

NendNend − Nbw

Nbw

classical problem

 one-to-one correspondence between  and k Φ*(k)

Φ

N𝒩1 𝒩2

Φend

𝒩1 − Nbw 𝒩2 − Nbw

Φ*(k)
Φ*(k)

stochastic problem

 is a stochastic quantityΦ*(k) 11
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Power spectrum in the backward approximation
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Vennin, Ando [2021] 
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“Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]
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Relation between field values and physical distances encoded in the structure  of a universe which inflates stochastically
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ρend
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V* = (σH)−3
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V

“Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]
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Relation between field values and physical distances encoded in the structure  of a universe which inflates stochastically
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“Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]
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( ⃗x )d ⃗x

∫
𝒫*

e3𝒩𝒫*( ⃗x )d ⃗x
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( ⃗x )]Volume-averaged number of -folds:e
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Stochastic trees
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Parent patches become hypersurfaces of fixed final volume, approximated by the mean volume 

Hypersurfaces of fixed mean final volume reduce to single points 

Backward fields become deterministic quantities

Single-clock models

Φ → ϕ : single-field models of inflation along a dynamical attractor (slow roll)

ϕ

V(ϕ) classical drift

quantum diffusion



ρend

𝒫* 𝒫0

𝒫*
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𝒫0

ρend

𝒫*

𝒫*

𝒫*

𝒫1
𝒫2

𝒫0

Statistics of coarse-grained fields in the large-volume approximation

P(ζR) = PV
FPT,ϕ0→ϕ* (ζR − ⟨𝒩ϕ*

⟩V + ⟨𝒩ϕ0
⟩V)

P(ζR1
, ζR2

) = ∫ d𝒩ϕ0→ϕ*
(𝒩ϕ0→ϕ*

)PV
FPT,ϕ*→ϕ1 (ζR1

− 𝒩ϕ0→ϕ*
+ ⟨𝒩ϕ0

⟩V − ⟨𝒩ϕ1
⟩V) PV

FPT,ϕ*→ϕ2 (ζR2
− 𝒩ϕ0→ϕ*

+ ⟨𝒩ϕ0
⟩V − ⟨𝒩ϕ2

⟩V)



ϕend ϕend + Δϕwell

v(ϕ)
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 boundary
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boundary
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quantum well:
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Large-volume approximation

One-point distribution of curvature perturbation coarse grained at scale R
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Large-volume approximation
Two-point distribution of coarse grained fields v(ϕ)

absorbing  
boundary

reflective  
boundary 

ϕend ϕend + Δϕwell ϕ

quantum well

analytical approx.  
results

analytical approx.  
results

tilted well:



Power spectrum in the large-volume approximation
Two-point correlation function of coarse-grained fields:

⟨ζR1
ζR2

⟩ = ∫ dζR1 ∫ dζR2
P(ζR1

, ζR2
)ζR1

ζR2
= ⟨𝒩2

ϕ0→ϕ*
⟩V − ⟨𝒩ϕ0→ϕ*

⟩2
V ≡ ⟨δ𝒩2

ϕ0→ϕ*
⟩V = ⟨δ𝒩2

ϕ0
⟩V − ⟨δ𝒩2

ϕ*
⟩V

no dependence on the coarse-graining scales R1, R2

In Fourier space: ζRi
( ⃗x i) = ∫

d ⃗k
(2π)3/2

ζ ⃗k ei ⃗k ⋅ ⃗x i W̃ ( kRi

a )
⟨ζR1

ζR2
⟩ = ∫

∞

0
d ln k𝒫ζ(k)W̃ ( kr

a )r > R1, R2
⟨ζR1

ζR2
⟩ = ∫

∞

0
d ln k 𝒫ζ(k)W̃ ( kR1

a ) W̃ ( kR2

a ) W̃ ( kr
a )

Differentiation w.r.t. :r

𝒫ζ(k) = −
∂

∂ ln r
⟨ζR1

ζR2
⟩ r=aend/k =

∂
∂ ln r

⟨δ𝒩ϕ*
⟩2

r=aend/k

𝒫ζ(k) =
r
r̃ [ 1

3
∂

∂ϕ*
ln⟨e3𝒩ϕ*⟩ −

∂
∂ϕ*

ln H(ϕ*)]
−1 ∂

∂ϕ*
⟨δ𝒩2

ϕ*
⟩V ⟨e3𝒩ϕ*⟩1/3= 1

2
r
r̃

aendσH(ϕ*)
k

V. Vennin and A. A. Starobinsky [2015] 
T. Fujita, M. Kawasaki, Y. Tada and T. Takesako [2013]c.f.r. Same expression at l.o. in slow roll neglecting volume weighting 

 and defining  via  and not via ϕ* ⟨𝒩⟩ ⟨e3𝒩⟩

r̃ = r + R1 + R2

r ≫ R1, R2 →
r
r̃

≃ 1

∂ ln N/∂ϕ ≃ ϵ1/2 /MPl
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Going beyond 
Bacteria model of inflation

21

Creminelli, Dubovsky, Nicholas, Senatore, Zaldarriaga [2008] 
Dubovsky, Senatore, Villadoro [2009]

Discretisation of the inflationary dynamics

Galton-Watson process

End site : bacterium dies

Random hopping

Bacteria live on discrete set of positions along a line, replicating into  copies at each time stepN

Inflaton values 

Number of dead bacteria

Stochastic-  program on stochastic trees δN Ongoing works with 
 Pierre Auclair, Baptiste Blachier, Vincent Vennin

Hubble patches Bacteria 

Sites

Difference in  and (1 − p) p Drift

Quantum diffusion

Final volume

From JHEP 0904:118,2009
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Conclusions

Stochastic inflation and stochastic-  formalisms are powerful framework to compute non perturbative results for 
cosmological observables

δN

Still several assumptions: single field, slow roll, toy models, backward approximation, large-volume approximation:  
not definitive results

For small noise amplitude, standard results are recovered, but for regimes of large perturbations, it gives specific 
imprints in cosmological observables

It can be extended beyond one-point statistics: power spectrum

At observable scales, the power spectrum seems not affected by quantum diffusion 

Promising directions: more results are yet to come!


