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Generation of cosmological perturbation
Inflation explains causally the small fluctuations we observe in the universe and the structures at large scales
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v freezed fluctuations ! post-inflationary evolution
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Cosmological Perturbation Theory

Splitting of the full metric and of the matter fields (inflaton) into a background part and small perturbations:

8u(X1) = 8,,(1) + 5Agw(7, ) homogeneous and isotropic background classical solution

P(X, )= (1) + 65¢(%, 1) quantised fluctuations
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Cosmological Perturbation Theory

Splitting of the full metric and of the matter fields (inflaton) into a background part and small perturbations:

8u(X1) = 8,,(1) + (SAgW(Y, ) homogeneous and isotropic background classical solution

P(X, )= (1) + 65¢(%, 1) quantised fluctuations

v

Quantum field theory on curved spacetime

\

CMB scales: density fluctuations are small

Small scales: density fluctuations could be Iarge x Non_perturbative framework needed!
(PBHS, SIGWs)

Dynamics of eternal inflation
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super-cH Sub-Hubble scales: small amplitude, cosmological perturbation theory
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Super-Hubble scales: large perturbations, stochastic inflation

sub-cH
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A. Starobinsky [1986]
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Stochastic inflation

(caH)™!

super-oH Sub-Hubble scales: small amplitude, cosmological perturbation theory

Super-Hubble scales: large perturbations, stochastic inflation

>
N =loga
A. Starobinsky [1986]
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Stochastic inflation

super-oH Sub-Hubble scales: small amplitude, cosmological perturbation theory

k—l

o Super-Hubble scales: large perturbations, stochastic inflation
SUD-0.

>
N =loga
A. Starobinsky [1986]

A _ dk —
B, %) = [

ik A
aaH) [(Dk(N) ‘ ay +h.c ] Q= (¢, 7, ...y 7,) n; = d¢p;/dN

. . (>
Stochastic classical theory for @: e = F (®,,) + G(D,,) - £

dN

Fy(®,) : classical background eom

¢ :white Gaussian noise  (£(X,N)) =0, (&(F,N)ET",N)) = 6N — N') sin(caH| % — x"|)
d In(caH)
dN

(G? )i = gﬁq)i,q,j [aaH (N,), Ni]
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It allows to calculate correlators of quantum fields during inflation: standard QFT results are recovered
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Stochastic inflation

It allows to include quantum effects on background dynamics: backreaction

It allows to calculate correlators of quantum fields during inflation: standard QFT results are recovered

(even beyond one |OOp) Starobinsky, Yokoyama [1994]

Finelli, Marozzi, Starobinsky, Vacca, Venturi [2009], [2010]
Garbrecht, Rigopolous, Zhu [2014]

Garbrecht, Gautier, Rigopoulos, Y. Zhu [2015]

It reproduces leading IR logarithms: factors of loga = Ht that grow without bound as inflation proceeds

It can be resummed to describe late time regimes where eventually perturbation theory breaks down

Tsamis, Woodard [2005]
T. Prokopec, N. Tsamis, and R. Woodard [2008]

Given the stochastic framework, how properties of cosmological perturbations
(distribution functions, power spectrum etc.) are affected?






oNN formalism

At large scales, the curvature perturbation ¢ corresponds to the number of e-folds realised between a
spatially flat hypersurface and a final hypersurface of uniform energy density

ON(X, 1)
flat L
V= (/K—I\A\/ sp=0 Lifshitz, Khalatnikov [1960]
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N(X, 1) N Wands, Malik, Lyth, Liddle [2000]
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oNN formalism

At large scales, the curvature perturbation ¢ corresponds to the number of e-folds realised between a
spatially flat hypersurface and a final hypersurface of uniform energy density

SN(x, 1)
flat L
V= (/K—I\A\/ sp=0 Lifshitz, Khalatnikov [1960]
C(t,Xx) = N(t, x) — N(t) = 6N Starobinsky [1983]
N(xX', 1) N Wands, Malik, Lyth, Liddle [2000]
l//ﬂ:a}) \ 4 A 4 [in

Separate universe approach  sasxi stewart [1996)

Salopek, Bond [1990]
Wands, Malik, Lyth, Liddle [2000]

Universe : at large scales, collection of independent, locally homogeneous
and isotropic patches

_) ° ° °
N(t, x): amount of expansion in such universes
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Duration of inflation becomes a stochastic variable: 4

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]
Vennin, Starobinsky [2015]
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Duration of inflation becomes a stochastic variable: 4

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]
Vennin, Starobinsky [2015]

Distribution function for the duration of inflation ( first-passage time )
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Stochastic ON-formalism

Duration of inflation becomes a stochastic variable: 4

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]
Vennin, Starobinsky [2015]

Distribution function for the duration of inflation ( first-passage time )

a2

0 0 1 .
— T — I . I ki
P ®) = L (@) - P(N, D) Lep(®) = F'= + S GG

IDiID) Pepr.o=o,,(N) = o(H)

Statistics of £ from the statistics of #: (. o(X) = N (X) — (N}
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Characteristic function ( includes all moments )
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Stochastic-0/N formalism: exponential tails

Full PDF of the first passage time

Characteristic function ( includes all moments )

2, @) = (") =

Useful trick: pole expansion

J

r OO

— OO0

()
(@)= Y D

| 1
e""P(N, @) dN —p Ly, D) =—ity(t,P) —p P(,/V,CD)zzﬂ

Ezquiaga, Garcia-Bellido, Vennin (2020)

Yo

AN, —it

n n

P(N, D) = Z a (@) e M 0<Ag <A <A, I

n

- g(1, D)




Stochastic-o/N formalism: exponential tails

Full PDF of the first passage time

Characteristic function ( includes all moments )

00 »+00
1. ®)=(e"")=| PN, ®)dN —p Ly, D)= —ity(t,®) —p PN, D)= > e~ y(t, D) dt
Useful trick: pole expansion Fzquiaga, Garcia-Bellido, Vennin (2020)

Yo

),
y(t, ®) = Z X”(_ z?t - g(t, D)

n n

P(N, D) = Z a (@) e M 0<Ag <A <A, I

n

Tail of the PDF of /' (hence {) has an exponential fall-off behaviour

This type of non-Gaussianities cannot be captured by perturbative parametrisations (such as the fy1, gnp €xpansion)

7



Implications for PBHs

PBHs are sensitive to the tails of distribution functions

Abundance of PBHs at formation:  gpf) = rop(@ de
(Press-Schechter method) .

P(C)

Mass fraction underestimated of orders of magnitude

Implications for inflationary models (amount of fine tuning, overproduction,....)

Consequences in light of observational constraints
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Stochastic-0/N formalism: exponential tails
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Vennin, Wands [2024]



Stochastic-0/N formalism: exponential tails

10%2F v=v,1 +ap+ 4 |
O — FullOIEDF a¢ Gal’isqi:n) approx. “/ 7 04
| g A
K “":" ,.’:,.." v(¢)
' ' ~¢ | 402
<
N~
100 X
3 —A¢ Ag i
—0.2 full PDF
-==- tall exp. exact
-04 4w\ e tail exp. approx.
2.0
Vennin, Wands [2024]
10—2 g = 0.01
— q = 0.1
—_— aq =0.3
Animali, Vennin [2023] 3 a = 0.9
1075 1 2 3 A 5



Beyond one-point distributions

In the separate-universe framework, distance between two final Hubble patches encoded in the time at which
their worldlines became independent

We can calculate correlations between durations of inflation (between curvature perturbation)
at fixed physical distance

We can extract multiple-point statistics

N A obs. universe

Vennin, Ando [2021]
Tada, Vennin [2021]
Animali, Vennin [2024]

>
physical scales



Extracting cosmological observables

A Inflationary era E Hot Big Bang

(aH)™

comoving

scales Scale k crosses the Hubble radius at

Ni = Nend o wa — Nend _ log(aendH/k)

>

N

classical problem
D 4

stochastic problem

0 TS .-
: D..(k) .
D..(k) |
(Dend 5 (I)end
:< bw >! R
N, end N bw N, end N

one-to-one correspondence between k and @..(k)

®..(k) is a stochastic quantity



o : ° “Power rum in hastic inflation”
Power spectrum in the backward approximation e enmin, Ando 20211
N A obs. universe 7 o Pend
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P
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Power spectrum in the backward approximation

Split the expansion in shared and independent expansion:

C(?l) = N [Dy = D( x>l-  x)]

N A obs. universe

“Power spectrum in stochastic inflation”
Vennin, Ando [2021]

O+ NPT, T))] — F (D)

f—é pend'
_—
e\
(D 7)2
P
Dy
/'
P
7_3O —1 >
0 (oH) physical scales

12



Power spectrum in the backward approximation

Split the expansion in shared and independent expansion:

“Power spectrum in stochastic inflation”

Compute the two point function: ({(x,) 5(7]-)),, = Jdd)J,;(d)Q(é/V%d)O — ®,))

N A obs. universe -

b
7
3

J

)]

Vennin, Ando [2021]

N ID(T;, )] = H (D)

.
w®
.

>
physical scales

12



“Power spectrum in stochastic inflation”

Power spectrum in the backward approximation Vennin, Ando 2021

Split the expansion in shared and independent expansion: {(X) = /[®y = @u(X;, X)] + N [P(X;, X)] = V(D)

Compute the two point function: ({(x,) 5(7]-)),, = JdCID*P,:(CI)*)((S/VZ(CI)O — ®,))

N A obs. universe 7 T Pend
‘ V:Q
\ (U 2
D 7)2
P
Dy
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; P >
Po (0‘ H ) —1 physical scales
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“Power spectrum in stochastic inflation”

Power spectrum in the backward approximation Vennin, Ando 2021

b
7
3

Split the expansion in shared and independent expansion: {(X) = /[®y = @u(X;, X)] + N [P(X;, X)] = V(D)

Compute the two point function: ({(x,) C(YJ-))? = Jdd)J,;(d)Q(é/V%d)O — ®,))

PDF of field values in the splitting patch ————p Pdf of field values at a fixed backward e-folds number

P (D) =~ Py, [ D, Ny (7)]

N A obs. universe 7 T ‘ Pend
/\—/ 2 ----
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D 7)2
P
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0 Po (O'H) —1 physical scales

12



“Power spectrum in stochastic inflation”

Power spectrum in the backward approximation Vennin, Ando 2021

Split the expansion in shared and independent expansion: {(X) = /[®y = @u(X;, X)] + N [P(X;, X)] = V(D)
Compute the two point function: ({(x,) C(Yj))f = Jd¢*Pf(®*)(6W2(®O — ®,))

PDF of field values in the splitting patch ————p Pdf of field values at a fixed backward e-folds number

P (D) =~ Py, [ D, Ny (7)]

Comoving lines separated by r become independent when: ¢™wv. = rH(®.)

I N A obs. universe 1 7 Pend
. . . . _ . . /\_/ v e
Quasi de-Sitter limit: M, (r) = log(rH,,y) = — log »
kend ‘ 22
D 7)2
P1
D/
P,
P\
>
0 Po (cH )_1 physical scales

12



“Power spectrum in stochastic inflation”

Power spectrum in the backward approximation Vennin, Ando 2021

Split the expansion in shared and independent expansion: {(X) = /[®y = @u(X;, X)] + N [P(X;, X)] = V(D)
Compute the two point function: ({(x,) 5(7]-))? = Jd¢*Pf(®*)(5/V2(®O — ®,))

PDF of field values in the splitting patch ————p Pdf of field values at a fixed backward e-folds number

P (D) =~ Py, [ D, Ny (7)]

Comoving lines separated by r become independent when: ¢™wv. = rH(®.)

I N A obs. universe 7 7 Pend
uasi de-Sitter limit: N, (r) = log(rH,,y) = — lo -+ —m
Q bw( ) g( e d) g (kend) ‘
(D 7)2
P
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0 Po (cH) -1 physical scales
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Power spectrum in the backward approximation

Vennin, Ando [2021 A
ennin, Ando | ] V(o)
10_3-§ o lmzqﬁz
' stochastic region 2
104 flat well classical region
V, AN
107°
L E >
@\ 10 ¢end ¢well ¢
10~7
1.
10-8 10 - HZ =1
2
101 : °
1 1 1 1 1 1 1 T uz — 5
0.0 2.5 5.0 7.5 100 125 15.0 17.5 20.0 — 2 =7
2 103 sl
L4
o
@\ 10—5
107" -
10775
10—11 : : : : : o N
—60 —50 —40 —30 —20 —10 0

In(k/kena) 13



Stochastic trees

“Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]
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St() C h aStiC trees “Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

—~ Pend
O

'v"v‘
() O
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St() C h aStiC trees “Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

—~ Pend
S

'Vif
() O

Final volume: — =
V. dx
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St() C h aStiC trees “Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

Pend
(/

A
/

'3'\0 ﬁ'ﬁ‘ﬁﬁ . GO

_/
. "ﬁ‘ 9‘; t\\

— 3N 5 (%)

v |, dx e B

Final volume: — =~ — = Egp, [e3/V%(X)] @
V. J@ dx

Volume-averaged number of e-folds: W = Eg. [/’/%(X )] = [ o (_,;d_, =V E 5. [e3/V 2N o (X )]
e > 7\ )d x
P

14



St() C h aStiC trees “Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

Pend
“'e's MW, O o

_/
. "Q‘ 9‘; t\\ /ll

V J@* dx 63/’/9’*(7)

Final volume: — = — = Egp, [€3‘/’/9’*(7)] @
V. J dx
P o
J e3/V9’(x)/V@(x)dx V
— EV ] — i _ " 3N 5,(X) —
Volume-averaged number of e-folds: W= Ey, |/ 5 (X)| = —— = kg [6 2N (X )]

Distributions P(V| ®.) and P(V, W| ®..) can be numerically sampled
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St() C h aStiC trees “Clustering of primordial black holes from quantum diffusion during inflation”
Animali, Vennin [2024]

Relation between field values and physical distances encoded in the structure of a universe which inflates stochastically

P Pend
R

'v"v‘
() O

V J@* dx 63/’/9’*(7)

Final volume: — = — = Egp, [€3‘/’/9’*(7)] @
V. J dx
P B —\ 11—
J e3/V9’*(x)/V@(x)dx V
— EV ] — i _ " 3N 5,(X) —
Volume-averaged number of e-folds: W= Ey, |/ 5 (X)| = —— = kg [6 2N (X )]

Distributions P(V| ®.) and P(V, W| ®..) can be numerically sampled

P(V|Q)P(@:| D) P(V[P)P(P | D)
P(V) | dD. P(V| ©.)P(D+ | D)

Backward distribution: P(®@«|V,®,) =
14



Volume weighting
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Volume weighting

Different regions of the universe inflate by different amounts ./
they contribute differently to ensemble averages computed by local observers on the end-of-inflation hypersurface

R0 COOS e
VY, ]
o6

~
¢
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Volume weighting

Different regions of the universe inflate by different amounts ./
they contribute differently to ensemble averages computed by local observers on the end-of-inflation hypersurface

Pen
Ssis ZO8S @0 e ‘

S o—e & & t
T AP/
~ ~

Distributions with respect to which observable quantities are defined should be volume weighted
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Volume weighting

Different regions of the universe inflate by different amounts ./
they contribute differently to ensemble averages computed by local observers on the end-of-inflation hypersurface

SO0 ,0 end
| N /)
{5 s '
()
o

GOVS

2y
Distributions with respect to which observable quantities are defined should be volume weighted
Py o)
o Jo AN Pepro(A)e3”
éo,cg(?) — /V@O(?) T [E;O(/V@()) P(ch | (I)O) — PP“/PT,(I)O(ch + [E};SO(‘/V@O))
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Volume weighting

Different regions of the universe inflate by different amounts ./
they contribute differently to ensemble averages computed by local observers on the end-of-inflation hypersurface

~Ea0 pend
| N /)
{5 s ’
(2
(

GOVS

2y
Distributions with respect to which observable quantities are defined should be volume weighted
Py o)
o Jo AN Pepro(A)e3”
éo,cg(?) — /V@O(?) T [E;O(/V@()) P(ch | (I)O) — PP“/PT,(I)O(ch + [E};SO(‘/V@O))

For P (W) x e ™™ and A < 3 the volume-weighted distribution is not well-defined “eternal inflation”
FPT,®, 5
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Large-volume approximation
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Large-volume approximation

Ensemble average over the set of final leaves ———p» Stochastic average of a single element within the ensemble
» 00

Vo (V) PV |®.) =5V = Vi(ed o)) (e3oy = | Prpp o (N)e>dN
J

(N g€ D

W — (W) W (Np )y = e
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Large-volume approximation

Ensemble average over the set of final leaves ———p» Stochastic average of a single element within the ensemble
» 00

Vo (V) PV |®.) =5V = Vi(ed o)) (e3oy = | Prpp o (N)e>dN
J

(N g€ D
(3N 0.

W — (W) W (WNp)y=

Parent patches become hypersurfaces of fixed final volume, approximated by the mean volume
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Large-volume approximation

Ensemble average over the set of final leaves ———p» Stochastic average of a single element within the ensemble
» 00

Vo(V)  P(V|®.) =5V — V(e o)) (o) = | Prpro (N)e*dN
Jo

(N g€ D
(3N 0.

W — (W) W (Ng,)y =

Parent patches become hypersurfaces of fixed final volume, approximated by the mean volume

Single-clock models
V()4

classical drift

® — ¢ : single-field models of inflation along a dynamical attractor (slow roll)
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Large-volume approximation
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classical drift

® — ¢ : single-field models of inflation along a dynamical attractor (slow roll)

ypersurfaces of fixed mean final volume reduce to single points
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Large-volume approximation

Ensemble average over the set of final leaves ———p» Stochastic average of a single element within the ensemble
» 00

Vo(V)  P(V|®.) =5V — V(e o)) (o) = | Prpro (N)e*dN
Jo

(N g€ D
(3N 0.

W — (W) W (Ng,)y =

Parent patches become hypersurfaces of fixed final volume, approximated by the mean volume

Single-clock models
V()4

classical drift

® — ¢ : single-field models of inflation along a dynamical attractor (slow roll)

ypersurfaces of fixed mean final volume reduce to single points

Backward fields become deterministic quantities

16



Statistics of coarse-grained fields in the large-volume approximation

P(CRI, CRZ) — Jd'/’/¢o—>¢*(°/’/¢o_>¢*)PP"/PT,¢*—>¢1 (CRI — /V¢O_>¢* + <‘/V¢O>V R <=/V¢1>V> PP“/PT,qﬁ*—sz (CR2 — /V¢O_>¢* + </V¢O>V T </V¢2>V)
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Large-volume approximation

One-point distribution of curvature perturbation coarse grained at scale R

Y = VO
102
—— z,=0.8
T, = 0.0
10" i
'I\\‘I\ \ _I_ Ty = 02
RN
PN .
/E 100 - : | analytical
I
Uz R
= ]
S
| | 1 1
| | 1 1
l R
| : : : : \\\ \\ -l-H:LHT.
10—2 - : Lo ! . *
] I T \ S
. I 1 1| \ N
I [ 11 \ ©\A
I | | : \\ \\
: : : | \\ \\\
10_3 : T : : :I I\L 1 A 1
—1.0 —0.5 0.0 0.5 1.0 1.5

quantum well:

A
v(¢)
y = VO
absorbing
boundary
R
VO 1 1 \
quantum well E reflective
+ boundary
: : >
¢end ¢end + Aqswell ¢
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Large-volume approximation

Iwo-point distribution of coarse grained fields

T 0.20

T 0.15

T 0.10

T 0.05

;10_1

5'10_2

0.05

analytical approx.

results

analytical approx.
results

N\

P(CR1 ; CRQ

V()

3 101

-20 —-15 —-10 -05 0.0 0.5 1.0 1.5
/La
10° 5
] —I— CR2 ~ —1.73
1 == (g, = —1.42
1 == (g, ~ —0.87
1 —— - analytical
107" 4 -”H:H-F <
102 ]
103 T T T T T
—2.9 —2.0 —1.5 —1.0 —0.5 0.0

CRy

 tilted well:

absorbing

numerical simulations

boundary : N .
K : reflective
T quantum well i Poundary
: : >
¢end ¢end + Agbwell ¢
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Power spectrum in the large-volume approximation

Two-point correlation function of coarse-grained fields:

<§R1§R2> — dCRl dCRzp(CRI»CRz)CRICRz — <«/V bo—> - )V </V¢ — s <5«/V O_>¢*>V — <5=/V20>V <5~/V >V

no dependence on the coarse-graining scales R, R,

In Fouri : — - dk TR A
n Fourier space: CR,-(xi):u o) Cpe " W

r OO

— (kR \ ~ [ kRy\ ~ ( kr roo — [ kr
(Créry) = | dInkPOW{ — ) W | — | W{— ey (L) = dlnk@C(k)W(;>

J() Jo

Differentiation w.r.t. r:

_ _ 2
g@é’(k) — aln ’,.<CRICR2> ‘ r=a,,/k — aln r(é/ng*) ‘ r=da,,q/k r=r+ Rl + R2
9 —1 r > RI’RZ d — 1
P00 = = |22 1nged s O nH aa/ﬂ\
L =313 e op. P dqﬁ*( Loy g st 0In N/og = \/? [ M,
¢ . V.Vennin and A. A. Starobinsky 2015 Same expression at |.o. in slow roll neglecting volume weighting
Lt Fujita, M. Kawasaki, Y. Tada and T. Takesako [2013] and deﬁning @ via </I/> and not via <e3/’/>
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Going beyond
Creminelli, Dubovsky, Nicholas, Senatore, Zaldarriaga [2008]

Bacteria model of inflation Dubovsky, Senatore, Villadoro [2009]

Discretisation of the inflationary dynamics

I-p p End site : bacterium dies
N\ /N 7
------- -o0—00—O0— o —0O——0 Galton-Watson process
i+1 i i-1 1 0

Bacteria live on discrete set of positions along a line, replicating into N copies at each time step

Bacteria ——p Hubble patches V)
p

Sites —P» Inflaton values

power—law

Difference in (1 —p)andp ——p  Dyift From JHEP 0904:118,2009

gaussian

Random hopping Quantum diffusion

Number of dead bacteria ——®»  Final volume

Ongoing works with
Pierre Auclair, Baptiste Blachier, Vincent Vennin

Stochastic-oN program on stochastic trees
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Conclusions

Stochastic inflation and stochastic-oN formalisms are powerful framework to compute non perturbative results for
cosmological observables

For small noise amplitude, standard results are recovered, but for regimes of large perturbations, it gives specific
imprints in cosmological observables

It can be extended beyond one-point statistics: power spectrum

At observable scales, the power spectrum seems not affected by quantum diffusion

Still several assumptions: single field, slow roll, toy models, backward approximation, large-volume approximation:
not definitive results

Promising directions: more results are yet to come!
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