Looping with Combinatorics

Paolo Benincasa

Instituto Galego de Física de Altas Enerxías 28 October 2024 - Looping in the Primoridial Universe Based on works in collaboration with: F. Vazão, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Quantum) consistency of the theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why loops?

Phenomenology

E.g.: Coupling inflaton-fermions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Quantum) consistency of the theory
 - Infra-red effects
 - Renormalisation
 - Perturbation theory breakdown
 - General consistency conditions

Guiding principles

Symmetries

Quantum Mechanics

Guiding principles

Symmetries

Quantum Mechanics

Flat Space Poincaré invariance

Unitarity

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Poincaré invariant operator: $\hat{\mathcal{O}}$ $\langle 3, 4|\hat{\mathcal{O}}|1, 2\rangle := \delta (p_1 + p_2 - p_3 - p_4)$ Unitary S-matrix: $\hat{S} \mid \hat{S}\hat{S}^{\dagger} = \hat{\mathbb{I}} = \hat{S}^{\dagger}\hat{S}$ $\hat{S} := e^{i\lambda\hat{\mathcal{O}}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Poincaré invariant operator: $\hat{\mathcal{O}}$ Unitary S-matrix: $\hat{S} \mid \hat{S}\hat{S}^{\dagger} = \hat{\mathbb{I}} = \hat{S}^{\dagger}\hat{S}$ $\langle 3, 4 \mid \hat{\mathcal{O}} \mid 1, 2 \rangle := \delta \left(p_1 + p_2 - p_3 - p_4 \right)$ $\hat{S} := e^{i\lambda\hat{\mathcal{O}}}$

$$\langle 3,4|\hat{S}|1,2\rangle = \delta(p_1 + p_2 - p_3 - p_4) \left\{ 1 + i\lambda + \lambda^2 \vartheta(s - 4m^2) + \ldots \right\}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

$$|\hat{\mathbf{3}}, 4|\hat{\mathbf{5}}|1, 2\rangle = \delta (p_1 + p_2 - p_3 - p_4) \left\{ \mathbf{1} + i\lambda + \lambda^2 \vartheta(s - 4m^2) + \dots \right\}$$

$$1 - \frac{3}{2 - \frac{3}{4}} = 4$$

$$\langle \mathbf{3}, \mathbf{4} | \hat{\mathbf{S}} | \mathbf{1}, \mathbf{2} \rangle = \delta \left(p_1 + p_2 - p_3 - p_4 \right) \left\{ 1 + \mathbf{i} \mathbf{\lambda} + \lambda^2 \, \vartheta(\mathbf{s} - 4m^2) + \ldots \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\langle 3,4|\hat{S}|1,2\rangle = \delta\left(p_1 + p_2 - p_3 - p_4\right)\left\{1 + i\lambda + \lambda^2 \vartheta\left(s - 4m^2\right) + \ldots\right\}$$

 $4|\hat{S}|3,4\rangle = \delta\left(p_1 + p_2 - p_3 - p_4\right) \left\{1 + i\lambda + \lambda^2 \log \frac{4m - 3}{\Lambda_{UV}^2} + \dots\right\}$ $\frac{1}{2} + \frac{3}{4}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

It is important to understand the analytic structure of observables on general grounds

Deeper understanding of the physics encoded into cosmological observables

Novel rules which can allow to go beyond the regime in which the combinatorial description has been formulated

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

$$\langle \Phi(ec{p}_1)\cdots\Phi(ec{p}_n)
angle \,=\,\int \mathcal{D}\Phi\,\mathfrak{P}[\Phi]\Phi(ec{p}_1)\cdots\Phi(ec{p}_n)$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

$$\langle \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \rangle = \int \mathcal{D} \Phi(\vec{p}_1) \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n)$$

Probability
distribution

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

$$\langle \Phi(\vec{p}_1)\cdots\Phi(\vec{p}_n)\rangle = rac{\int \mathcal{D}\Phi \,\Psi^{\dagger}[\Phi]\Phi(\vec{p}_1)\cdots\Phi(\vec{p}_n)\Psi[\Phi]}{\int \mathcal{D}\Phi \,|\Psi[\Phi]|^2}$$

 $\Psi[\Phi] := \langle \Phi|\hat{\mathcal{T}}\exp\left\{-i\int_{-\infty}^0 d\eta \,H(\eta)\right\}|0\rangle$

Wavefunction of the universe (transition amplitude from $|0\rangle$ to $\langle\Phi|)$

イロト 不得 トイヨト イヨト

э

$$\langle \Phi(\vec{p}_1)\cdots\Phi(\vec{p}_n)\rangle = \frac{\int \mathcal{D}\Phi \Psi^{\dagger}[\Phi]\Phi(\vec{p}_1)\cdots\Phi(\vec{p}_n)\Psi[\Phi]}{\int \mathcal{D}\Phi |\Psi[\Phi]|^2}$$

$$\Psi[\Phi]:=\langle\Phi|\hat{\mathcal{T}} ext{exp}\left\{-i\int_{-\infty}^{0}d\eta\,H(\eta)
ight\}|0
angle$$

Wavefunction of the universe (transition amplitude from $|0\rangle$ to $\langle\Phi|)$

Perturbation theory

 $\eta = -\infty$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Cosmology

integration

integrand

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[P.B.; '19]

External kinematics:
$$X_s := \sum_{j \in s} |\vec{p}^{(j)}|, y_e := \left| \sum_{j \in s_e} \vec{p}^{(j)} \right| (e \in \mathcal{E} \setminus \{\mathcal{E}^{(L)}\})$$

Loop momenta: $y_{e_1} := |\vec{l}|, y_{e_2} := |\vec{l} + \vec{p}^{(2)}|, \dots (e \in \mathcal{E}^{(L)})$

$$q_{\mathfrak{g}}(x,y) := \sum_{s \in \mathcal{V}_{\mathfrak{g}}} x_s + \sum_{e \in \mathcal{E}_{\mathfrak{g}}^{ext}} y_e$$

人口 医水黄 医水黄 医水黄素 化甘油

O Cosmological integrands: Singularities, combinatorics & computation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2 The IR/UV structure of cosmological integrals

One loop corrections without integration

Cosmological integrands: Singularities, combinatorics & computation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

External kinematics:
$$X_s := \sum_{j \in s} |\vec{p}^{(j)}|, y_e := \left| \sum_{j \in s_e} \vec{p}^{(j)} \right| (e \in \mathcal{E} \setminus \{\mathcal{E}^{(L)}\})$$

Loop momenta: $y_{e_1} := |\vec{l}|, y_{e_2} := |\vec{l} + \vec{p}^{(2)}|, \dots (e \in \mathcal{E}^{(L)})$

$$q_{\mathfrak{g}}(x,y) := \sum_{s \in \mathcal{V}_{\mathfrak{g}}} x_s + \sum_{e \in \mathcal{E}_{\mathfrak{g}}^{ext}} y_e$$

人口 医水黄 医水黄 医水黄素 化甘油

$$------ x_1 + x_2 = 0$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A flavour of cosmological polytopes

The singularities form a bounded region to which a function Ω is naturally associated

$$\Omega = \frac{1}{(x_1 + x_2)(x_1 + y)(y + x_2)} \equiv \frac{\mathfrak{n}_{\delta}}{q_{\mathcal{G}}q_{\mathfrak{g}_1}q_{\mathfrak{g}}}$$

A flavour of cosmological polytopes

A flavour of cosmological polytopes

[P.B., W. Torres Bobadilla; '21]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\Omega = \prod_{\mathfrak{g} \in \mathfrak{G}_{o}} \frac{1}{q_{\mathfrak{g}}(x, y)} \sum_{\{\mathfrak{G}_{c}\}} \prod_{\mathfrak{g}' \in \mathfrak{G}_{c}} \frac{1}{q_{\mathfrak{g}'}(x, y)}$$

[**P.B.**, W. Torres Bobadilla; '21]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\Omega = \prod_{\mathfrak{g} \in \mathfrak{G}_{\circ}} \frac{1}{q_{\mathfrak{g}}(x, y)} \sum_{\{\mathfrak{G}_{c}\}} \prod_{\mathfrak{g}' \in \mathfrak{G}_{c}} \frac{1}{q_{\mathfrak{g}'}(x, y)}$$

[P.B., W. Torres Bobadilla; '21]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example: $\{\mathfrak{G}_{\circ}\}$ for a triangle graph

$$\Omega = \prod_{\mathfrak{g} \in \mathfrak{G}_{\circ}} \frac{1}{q_{\mathfrak{g}}(x, y)} \sum_{\{\mathfrak{G}_{c}\}} \prod_{\mathfrak{g}' \in \mathfrak{G}_{c}} \frac{1}{q_{\mathfrak{g}'}(x, y)}$$

[P.B., W. Torres Bobadilla; '21]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Compatibility conditions allow to:

- write all the possible representations without spurious singularities
- 2 make manifest the symmetries that maps a simplex into another one
- improve analytical/numerical efficiency of the integration.

(Weighted) Cosmological Polytopes & I_G : A dictionary

Cosmological Polytope $\mathcal{P}_{\mathcal{G}}$

Canonical form $\boldsymbol{\omega}$

Triangulations

Boundaries (Faces)

Canonical form preserving transformations

> Paths along contiguous vertices

Cosmological Integral $\mathcal{I}_\mathcal{G}$

Integrand of $\mathcal{I}_{\mathcal{G}}$

Representations for the intgrand

Residues of the integrands

Symmetries of the integrand

Symbols for $\mathcal{I}_{\mathcal{G}}$

(Weighted) Cosmological Polytopes & I_G : A dictionary

Cosmological Polytope $\mathcal{P}_{\mathcal{G}}$

Canonical form $\boldsymbol{\omega}$

Triangulations

Boundaries (Faces)

Canonical form preserving transformations

> Paths along contiguous vertices

Cosmological Integral $\mathcal{I}_\mathcal{G}$

Integrand of $\mathcal{I}_{\mathcal{G}}$

Representations for the intgrand

Residues of the integrands

Symmetries of the integrand

Symbols for $\mathcal{I}_{\mathcal{G}}$

Trascendental
function $f_k = \int_a^b d \log R_1 \circ \ldots \circ d \log R_k$ Iterated
integralSymbols $\mathcal{S}(f_k) := R_1 \otimes \ldots \otimes R_k$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Towards a combinatorial RG: The JR/UV structure of cosmological integrals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

[P.B., F. Vazão; 24]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\underbrace{\begin{array}{c} \begin{array}{c} y_{12} \\ \mathbf{x}_1 \end{array}}_{X_1} x_2 = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \frac{1}{(x_1 + x_2 + \mathcal{X}_{\mathcal{G}})(x_1 + \mathcal{X}_{g_1})(x_2 + \mathcal{X}_{22})} \end{array}$$

[P.B., F. Vazão; 24]

(a)

$$\underbrace{ \sum_{x_1}^{y_{12}} }_{x_2} = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \frac{1}{(x_1^1 x_2^0 + x_1^0 x_2^1 + \mathcal{X}_{\mathcal{G}} x_1^0 x_2^0)(x_1^1 x_2^0 + \mathcal{X}_{\mathfrak{g}_1} x_1^0 x_2^0)(x_1^0 x_2^1 + \mathcal{X}_{\mathfrak{g}_2} x_1^0 x_2^0)}$$

The integral converges for values of α that identifies points inside the Newton polytope

[P.B., F. Vazão; 24]

$$\underbrace{ \begin{array}{c} {}^{y_{12}}_{x_1} \\ {}^{x_1} \end{array} }_{x_2} \ = \ \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} \, x_j^{\alpha} \right] \frac{1}{(x_1^1 x_2^0 + x_1^0 x_2^1 + \mathcal{X}_{\mathcal{G}} x_1^0 x_2^0)(x_1^1 x_2^0 + \mathcal{X}_{\mathfrak{g}_1} x_1^0 x_2^0)(x_1^0 x_2^1 + \mathcal{X}_{\mathfrak{g}_2} x_1^0 x_2^0)}$$

The integral converges for values of α that identifies points inside the Newton polytope

$$\mathfrak{W}^{(12)} = \begin{pmatrix} 2\alpha - 3\\ 1\\ 1 \end{pmatrix}, \ \mathfrak{W}^{(1)} = \begin{pmatrix} \alpha - 2\\ 1\\ 0 \end{pmatrix}, \ \mathfrak{W}^{(2)} = \begin{pmatrix} \alpha - 2\\ 0\\ 1 \end{pmatrix}, \ \mathfrak{W}^{'(1)} = \begin{pmatrix} -\alpha\\ -1\\ 0 \end{pmatrix}, \ \mathfrak{W}^{'(2)} = \begin{pmatrix} -\alpha\\ 0\\ -1 \end{pmatrix},$$

The integral diverges in the direction \mathfrak{e} if the related λ is ≥ 0

[P.B., F. Vazão; 24]

$$\underbrace{ \begin{array}{c} {}_{y_{12}}}_{x_1} \quad {}_{x_2} = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} \, x_j^{\alpha} \right] \frac{1}{(x_1^1 x_2^0 + x_1^0 x_2^1 + \mathcal{X}_{\mathcal{G}} x_1^0 x_2^0)(x_1^1 x_2^0 + \mathcal{X}_{\mathfrak{g}1} x_1^0 x_2^0)(x_1^0 x_2^1 + \mathcal{X}_{\mathfrak{g}2} x_1^0 x_2^0)}$$

E.g.: if $\lambda^{(12)} \longrightarrow 0$: sector decomposition

$${\cal I}^{
m div}_{\Delta_{j,12}} \ = \ \int_{0}^{1} {d\zeta_{j}\over \zeta_{j}} \ {(\zeta_{j})^{-\lambda^{(j)}}\over 1+\zeta_{j}} \ imes \ \int_{0}^{1} {d\zeta_{12}\over \zeta_{12}} \ (\zeta_{12})^{-\lambda^{(12)}}$$

[P.B., F. Vazão; 24]

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\begin{aligned} x_1 & \longrightarrow x_2 = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}} \left[\frac{dy_e}{y_e} y_e^{\beta} \right] \mu(y) \times \\ \times \frac{2(x_1 + x_2 + y_a + y_b + \mathcal{X}_{\mathcal{G}})}{(x_1 + x_2 + \mathcal{X}_{\mathcal{G}})(x_1 + x_2 + y_a + \mathcal{X}_{\mathcal{G}})(x_1 + x_2 + y_b + \mathcal{X}_{\mathcal{G}})(x_1 + y_a + y_b + \mathcal{X}_1)(x_2 + y_a + y_b + \mathcal{X}_2)} \end{aligned}$$

$$\mu(y) \sim \left[\frac{\text{Vol}^2 \Sigma_2(y_e^2, P^2)}{\text{Vol}^2 \Sigma_1(P^2)}\right]^{\frac{d-3}{2}}$$

$$y_a \swarrow y_b$$

$$P$$

$$Y_a \Rightarrow \text{Volume of the triangle, and all its side, are positive}$$

$$(y_a + y_b + P)(y_a + y_b - P)(y_a - y_b + P)(-y_a + y_b + P) \ge 0,$$

$$y_a \ge 0, \quad y_b \ge 0, \quad P \ge 0$$

[P.B., F. Vazão; 24]

$$\begin{aligned} x_1 & \longrightarrow x_2 = \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}} \left[\frac{dy_e}{y_e} y_e^{\beta} \right] \mu(y) \times \\ & \times \frac{2(x_1 + x_2 + y_a + y_b + \mathcal{X}_{\mathcal{G}})}{(x_1 + x_2 + \mathcal{X}_{\mathcal{G}})(x_1 + x_2 + y_a + \mathcal{X}_{\mathcal{G}})(x_1 + x_2 + y_b + \mathcal{X}_{\mathcal{G}})(x_1 + y_a + y_b + \mathcal{X}_1)(x_2 + y_a + y_b + \mathcal{X}_2)} \end{aligned}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

[P.B., F. Vazão; 24]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} \, x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} \, y_e^{\beta_e} \right] \, \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{g \subseteq \mathcal{G}} \left[q_g(x + X, y) \right]^{\tau_g}}$$

[P.B., F. Vazão; 24]

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} \, x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} \, y_e^{\beta_e} \right] \, \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}$$

The asymptotic structure of $\mathcal{I}_{\mathcal{G}}$ is captured by:

) a nestohedron, which is determined by the underlying cosmological polytope $\mathcal{P}_{\mathcal{G}}$, and whose facets are fixed via subgraphs

$$\mathfrak{W}^{(i_1\ldots i_{\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})}+\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})})}} = \begin{pmatrix} \lambda^{(i_1\ldots j_{\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})}+\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})})} \\ \mathfrak{e}_{(i_1\ldots i_{\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})}+\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})})} \end{pmatrix}, \qquad \lambda^{(i_1\ldots i_{\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})}+\boldsymbol{a}_{\mathfrak{s}}^{(\mathfrak{g})})} = \sum_{\boldsymbol{s}\in\mathcal{V}_{\mathfrak{g}}} \alpha_{\boldsymbol{s}} + \sum_{\boldsymbol{e}\in\mathcal{E}^{(L)}} \beta_{\boldsymbol{e}} - \sum_{\boldsymbol{\mathfrak{g}}'\in(\mathsf{tubings})} \tau_{\boldsymbol{\mathfrak{g}}'}$$

The integral diverges in the direction \mathfrak{e} if the related λ is ≥ 0

the contour of the loop integration Γ , which selects the divergent directions among the \mathfrak{W} 's of the nestohedron

[P.B., F. Vazão; 24]

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} \, x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} \, y_e^{\beta_e} \right] \, \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}$$

This combinatorial picture allows to:

- straightforwardly determine both the directions along which I_G can diverge and their degree of divergence;
- straightforwardly compute leading and subleading divergences (both in the IR and in the UV) via sector decomposition;
- the leading divergence in the IR are associated to the restriction of the underlying cosmological polytope onto special hyperplanes;
- write a systematic substraction that produces IR-finte quantities.

Towards IR-finte computables

[P.B., F. Vazão; 24]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

indicates that two sites are collapsed into one, and their site-weight integration measure is shifted

Towards IR-finte computables

[P.B., Vazão, '24]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Towards IR-finte computables

[P.B., Vazão, '24]

(ロト (母) (主) (主) の(())

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Flat-space limit: This is the known result in scattering amplitudes which can be obtained from a IR-finite observable: the Wilson loop with a Lagrangian insertion.

Flat-space limit: This is the known result in scattering amplitudes which can be obtained from a IR-finite observable: the Wilson loop with a Lagrangian insertion.

• Our systematic procedure automatically returns an IR finite flat-space limit despite the cosmological box integral might not a IR-divergent loop integral.

One loop corrections without integration

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} \, x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} \, y_e^{\beta_e} \right] \, \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}$$

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

$$\mathcal{I}_{\mathcal{G}} = \int_{0}^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_{s}}{x_{s}} \, x_{s}^{\alpha_{s}} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_{e}}{y_{e}} \, y_{e}^{\beta_{e}} \right] \, \mu_{d}(y) \, \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}$$

can be expressed in terms of

$$\begin{array}{ll} \text{(twisted period} \\ \text{integrals)} \end{array} \quad \quad \mathcal{I}_{\{\tau_{\mathfrak{g}}\}}^{(j)} := \int_{\Gamma} \mu_d \, \varphi \ \, , \qquad \varphi := \frac{\prod_{e \in \mathcal{E}^{(L)}} dy_e}{\prod_{\mathfrak{g} \in \mathfrak{G}^{(j)} \cup \{e\}} [q_{\mathfrak{g}}(y)]^{\tau_{\mathfrak{g}}}},$$

Each of these integrals can be expressed as a *finite* linear combination of master integrals

$$\mathcal{I}_{\{\tau_{\mathfrak{g}}\}}^{(j)} := \sum_{j=1}^{\nu} c_{j} \mathcal{J}_{j}, \qquad d\mathcal{J} = d\mathbb{A} \mathcal{J}$$

Canonical form: $d\mathcal{J} = \varepsilon d\mathbb{A} \mathcal{J} \Rightarrow \mathcal{J} = \mathbb{P} \exp\left\{\varepsilon \int_{\Gamma} d\mathbb{A}\right\} \mathcal{J}_{\circ}$

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single J_i ;
- 2 The factorisation property of such higher order operator determines the type; of solutions

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

A D N A 目 N A E N A E N A B N A C N

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;
- 2 The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;
- The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

A D N A 目 N A E N A E N A B N A C N

[P.B., G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single J_j;
- 2 The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

First clues on constraints on cosmological processes: perturbative unitarity, flat-space limit, factorisations, higher-codimensions singularities

General framework to have a direct formulation with IR safe observables

We scratched the surface of the one-loop structure: first glimpses of its analytic structure and its space of functions.