Looping with Combinatorics

Paolo Benincasa

Instituto Galego de Física de Altas Enerxías 28 October 2024 – Looping in the Primoridial Universe

Based on works in collaboration with: F. Vazão, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão.

KORKARRA ERKER SAGA

² (Quantum) consistency of the theory

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Why loops?

¹ Phenomenology

E.g.: Coupling inflaton-fermions

- **²** (Quantum) consistency of the theory
	- a Infra-red effects
	- **b** Renormalisation
	- **c** Perturbation theory breakdown
	- ^d **General consistency conditions**

Guiding principles

Symmetries **Quantum Mechanics**

Guiding principles

Symmetries **Quantum Mechanics**

Flat Space

Poincaré invariance Unitarity

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Poincaré invariant operator: $\hat{\mathcal{O}}$ $\langle 3, 4|\hat{O}|1, 2 \rangle := \delta (p_1 + p_2 - p_3 - p_4)$ Unitary S-matrix: $\hat{S} | \hat{S} \hat{S}^{\dagger} = \hat{I\!I} = \hat{S}^{\dagger} \hat{S}$ $\hat{S} := e^{i\lambda \hat{O}}$

$$
\langle 3, 4|\hat{S}|1, 2 \rangle = \delta (p_1 + p_2 - p_3 - p_4) \left\{ 1 + i\lambda + \lambda^2 \vartheta (s - 4m^2) + \ldots \right\}
$$

$$
\langle 3,4|\hat{S}|1,2\rangle = \delta (p_1 + p_2 - p_3 - p_4) \left\{ 1 + i\lambda + \lambda^2 \vartheta (s - 4m^2) + \ldots \right\}
$$

Non causal!

2

4

KORK EXTERNE PROVIDE

It is important to understand the analytic structure of observables on general grounds

KELK KØLK VELKEN EL 1990

Deeper understanding of the physics encoded into cosmological observables

Novel rules which can allow to go beyond the regime in which the combinatorial description has been formulated

$$
\langle \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \rangle \ = \ \int {\cal D}\Phi \, \mathfrak{P}[\Phi] \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n)
$$

イロメ イ団メ イ君メ イ君メー

重

$$
\langle \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \rangle \ = \ \int \mathcal{D} \Phi(\mathfrak{P}[\Phi] \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \\\hspace*{2.5cm} \rightarrow \hspace*{2.5cm} \text{Probability} \\ \text{distribution} \nonumber
$$

イロメ イ部メ イ君メ イ君メー

重

$$
\langle \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \rangle = \frac{\int \mathcal{D}\Phi \Psi^{\dagger}[\Phi] \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \Psi[\Phi]}{\int \mathcal{D}\Phi \, |\Psi[\Phi]|^2}
$$

$$
\Psi[\Phi] := \langle \Phi | \hat{\mathcal{T}} \exp \left\{-i \int_{-\infty}^{0} d\eta \, H(\eta) \right\} |0\rangle
$$

Wavefunction of the universe (transition amplitude from $|0\rangle$ to $\langle\Phi|$)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

 \Rightarrow

$$
\langle \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \rangle = \frac{\displaystyle \int \mathcal{D}\Phi \, \Psi^\dagger [\Phi] \Phi(\vec{p}_1) \cdots \Phi(\vec{p}_n) \Psi[\Phi]}{\displaystyle \int \mathcal{D}\Phi \, |\Psi[\Phi]|^2}
$$

$$
\Psi[\Phi] := \langle \Phi | \hat{\mathcal{T}} \exp \left\{-i \int_{-\infty}^0 d\eta \, H(\eta) \right\} |0\rangle
$$

Wavefunction of the universe (transition amplitude from $|0\rangle$ to $\langle\Phi|$)

Perturbation theory

 4 ロ) 4 何) 4 ヨ) 4 コ) ÷, 2990

Cosmological Integrals

[N. Arkani-Hamed, P.B., A.Postnikov; '17] [P.B.; '19]

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
\mathcal{I}_{\mathcal{G}} = \prod_{s \in \mathcal{V}} \left[\int_{X_s}^{+\infty} dx_s \, \tilde{\lambda}(x_s - X_s) \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} y_e^{\beta_e} \right] \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x, y)}{\prod_{\substack{\mathfrak{g} \subseteq \mathcal{G} \\ \text{Universal}}} q_{\mathfrak{g}}(x, y)}
$$
\nLoop

\nUniversity

[N. Arkani-Hamed, P.B., A.Postnikov; '17] [P.B.; '19]

$$
\mathcal{I}_{\mathcal{G}} = \prod_{s \in \mathcal{V}} \left[\int_{X_s}^{+\infty} dx_s \, \tilde{\lambda}(x_s - X_s) \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} y_e^{\beta_e} \right] \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x, y)}{\prod_{\substack{s \subseteq \mathcal{G} \\ \text{Universal} \\ \text{Universal} \\ \text{integration}}} \prod_{\substack{\mathfrak{g} \subseteq \mathcal{G} \\ \text{Universal} \\ \text{integrand} \\ \text{integrand} }} \mu_d(y) \, \prod_{\substack{s \subseteq \mathcal{G} \\ \text{Universal} \\ \text{integrand} }} \mu_d(y) \, \frac{\mathfrak{n}_{\delta}(x, y)}{\prod_{s \subseteq \mathcal{G} \\ \text{Universal} \\ \text{integrand} }} \right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

External kinematics:
$$
X_s := \sum_{j \in s} |\vec{p}^{(j)}|
$$
, $y_e := \left| \sum_{j \in s_e} \vec{p}^{(j)} \right|$ $(e \in \mathcal{E} \setminus \{ \mathcal{E}^{(L)} \})$

\nLoop momenta: $y_{e_1} := |\vec{l}|$, $y_{e_2} := |\vec{l} + \vec{p}^{(2)}|$, ... $(e \in \mathcal{E}^{(L)})$

$$
q_{\mathfrak{g}}(x,y) \; := \; \sum_{s \in \mathcal{V}_{\mathfrak{g}}} x_s + \sum_{e \in \mathcal{E}_{\mathfrak{g}}^{\text{ext}}} y_e
$$

KORK EXTERNE PROVIDE

Cosmological integrands: Singularities, combinatorics & computation

The IR/UV structure of cosmological integrals

One loop corrections without integration

Cosmological integrands: Singularities, combinatorics & computation

KORK ERKER ADA ADA KORA

External kinematics:
$$
X_s := \sum_{j \in s} |\vec{p}^{(j)}|
$$
, $y_e := \left| \sum_{j \in s_e} \vec{p}^{(j)} \right|$ $(e \in \mathcal{E} \setminus \{ \mathcal{E}^{(L)} \})$

\nLoop momenta: $y_{e_1} := |\vec{l}|$, $y_{e_2} := |\vec{l} + \vec{p}^{(2)}|$, ... $(e \in \mathcal{E}^{(L)})$

$$
q_{\mathfrak{g}}(x,y) \; := \; \sum_{s \in \mathcal{V}_{\mathfrak{g}}} x_s + \sum_{e \in \mathcal{E}_{\mathfrak{g}}^{\text{ext}}} y_e
$$

KORK EXTERNE PROVIDE

A flavour of cosmological polytopes

A flavour of cosmological polytopes

$$
- x_1 + x_2 = 0
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

A flavour of cosmological polytopes

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A flavour of cosmological polytopes

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A flavour of cosmological polytopes

The singularities form a bounded region to which a function Ω is naturally associated

$$
\Omega = \frac{1}{(x_1 + x_2)(x_1 + y)(y + x_2)} \equiv \frac{\mathfrak{n}_{\delta}}{q_{\mathcal{G}}q_{\mathfrak{g}_1}q_{\mathfrak{g}_2}}
$$

A flavour of cosmological polytopes

A flavour of cosmological polytopes

[**P.B.**, W. Torres Bobadilla; '21]

KOKK@KKEKKEK E 1990

$$
\Omega \, = \, \prod_{\mathfrak{g} \in \mathfrak{G}_{\circ}} \frac{1}{\mathit{q}_{\mathfrak{g}}(x,y)} \sum_{\{\mathfrak{G}_c\}} \prod_{\mathfrak{g}' \in \mathfrak{G}_c} \frac{1}{\mathit{q}_{\mathfrak{g}'}(x,y)}
$$

KOKK@KKEKKEK E 1990

[**P.B.**, W. Torres Bobadilla; '21]

$$
\Omega \,=\, \prod_{\mathfrak{g}\in \mathfrak{G}_{\circ}} \frac{1}{\mathfrak{q}_{\mathfrak{g}}(x,y)}\sum_{\{\mathfrak{G}_c\}} \prod_{\mathfrak{g}'\in \mathfrak{G}_c} \frac{1}{\mathfrak{q}_{\mathfrak{g}'}(x,y)}
$$

Example: {G◦} for a triangle graph

[**P.B.**, W. Torres Bobadilla; '21]

KORK EXTERNE PROVIDE

$$
\Omega \,=\, \prod_{\mathfrak{g}\in \mathfrak{G}_{\circ}} \frac{1}{q_{\mathfrak{g}}(x,y)}\sum_{\{\mathfrak{G}_c\}} \prod_{\mathfrak{g}'\in \mathfrak{G}_c} \frac{1}{q_{\mathfrak{g}'}(x,y)}
$$

[**P.B.**, W. Torres Bobadilla; '21]

KORKARYKERKER POLO

Compatibility conditions allow to:

- **1** write all the possible representations without spurious singularities
- **2** make manifest the symmetries that maps a simplex into another one
- **3** improve analytical/numerical efficiency of the integration.

(Weighted) Cosmological Polytopes & IG**: A dictionary**

Cosmological Polytope P_G Cosmological Integral \mathcal{I}_G

Canonical form *ω* Integrand of I^G

Canonical form preserving transformations

> Paths along contiguous vertices Symbols for $\mathcal{I}_{\mathcal{G}}$

Triangulations Representations for the intgrand

Boundaries (Faces) Residues of the integrands

Symmetries of the integrand

(Weighted) Cosmological Polytopes & IG**: A dictionary**

Cosmological Polytope P_G Cosmological Integral \mathcal{I}_G

Canonical form *ω* Integrand of I^G

Canonical form preserving transformations

> Paths along contiguous vertices $Symbols$ for $\mathcal{I}_{\mathcal{G}}$

Triangulations Representations for the intgrand

Boundaries (Faces) Residues of the integrands

Symmetries of the integrand

 $f_k = \int^b$ $\int_a^{\infty} d \log R_1 \circ \ldots \circ d \log R_k$ $S(f_k) := R_1 \otimes \ldots \otimes R_k$ **Trascendental** function Iterated integral Symbols

Towards a combinatorial RG: The IR/UV structure of cosmological integrals

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[**P.B.**, F. Vazão; 24]

イロト イ母 トイミト イミト ニヨー りんぺ

$$
\textbf{y}_{1} \qquad \qquad \textbf{y}_{2} \qquad \textbf{y}_{3} = \int_{\mathbb{R}_{+}} \prod_{j=1}^{2} \left[\frac{dx_{j}}{x_{j}} \, x_{j}^{\alpha} \right] \frac{1}{(x_{1} + x_{2} + \mathcal{X}_{\mathcal{G}})(x_{1} + \mathcal{X}_{\mathfrak{g}_{1}})(x_{2} + \mathcal{X}_{2})}
$$

[**P.B.**, F. Vazão; 24]

 QQ

∍

 4 ロ) 4 何) 4 ミ) 4 3)

$$
\textbf{y}_{1} \qquad \qquad \sum_{X_2} \; = \; \int_{\mathbb{R}_{+}} \prod_{j=1}^{2} \left[\frac{dx_{j}}{x_{j}} \, x_{j}^{\alpha} \right] \frac{1}{(x_{1}^{1}x_{2}^{0} + x_{1}^{0}x_{2}^{1} + \mathcal{X}_{\mathcal{G}}x_{1}^{0}x_{2}^{0})(x_{1}^{1}x_{2}^{0} + \mathcal{X}_{\mathfrak{g}_{1}}x_{1}^{0}x_{2}^{0})(x_{1}^{0}x_{2}^{1} + \mathcal{X}_{\mathfrak{g}_{2}}x_{1}^{0}x_{2}^{0})} \\
$$

The integral converges for values of *α* that identifies points inside the Newton polytope

[**P.B.**, F. Vazão; 24]

$$
\sum_{X_1} \sum_{X_2}^{y_{12}}\ =\ \int_{\mathbb R_+}\prod_{j=1}^2\left[\frac{dx_j}{x_j}\,x_j^\alpha\right]\frac{1}{(x_1^1x_2^0+x_1^0x_2^1+\mathcal X_{\mathcal G} x_1^0x_2^0)(x_1^1x_2^0+\mathcal X_{\mathfrak{g}_1} x_1^0x_2^0)(x_1^0x_2^1+\mathcal X_{\mathfrak{g}_2} x_1^0x_2^0)}
$$

The integral converges for values of *α* that identifies points inside the Newton polytope

$$
\mathfrak{W}^{\scriptscriptstyle{\mathrm{(12)}}}=\begin{pmatrix}2\alpha-3\\1\\1\end{pmatrix},\ \mathfrak{W}^{\scriptscriptstyle{\mathrm{(1)}}}=\begin{pmatrix}\alpha-2\\1\\0\end{pmatrix},\ \mathfrak{W}^{\scriptscriptstyle{\mathrm{(2)}}}=\begin{pmatrix}\alpha-2\\0\\1\end{pmatrix},\ \mathfrak{W}^{\scriptscriptstyle{\mathrm{(1)}}}=\begin{pmatrix}-\alpha\\-1\\0\end{pmatrix},\ \mathfrak{W}^{\scriptscriptstyle{\mathrm{(2)}}}=\begin{pmatrix}-\alpha\\0\\-1\end{pmatrix},
$$

The integral diverges in the direction e if the related λ is > 0 **KORK EXTERNE PROVIDE**

[**P.B.**, F. Vazão; 24]

$$
\sum_{X_1} \frac{y_{12}}{x_2} \ = \ \int_{\mathbb{R}_+} \prod_{j=1}^2 \left[\frac{dx_j}{x_j} \, x_j^{\alpha} \right] \frac{1}{(x_1^1 x_2^0 + x_1^0 x_2^1 + \mathcal{X}_{\mathcal{G}} x_1^0 x_2^0)(x_1^1 x_2^0 + \mathcal{X}_{\mathfrak{g}_1} x_1^0 x_2^0)(x_1^0 x_2^1 + \mathcal{X}_{\mathfrak{g}_2} x_1^0 x_2^0)}
$$

E.g.: if $\lambda^{(12)} \longrightarrow 0$: sector decomposition

$$
\mathcal{I}^{\text{div}}_{\Delta_{j,12}}\,=\,\int_0^1 \frac{d\zeta_j}{\zeta_j}\,\frac{\left(\zeta_j\right)^{-\lambda^{(j)}}}{1+\zeta_j}\,\times\,\int_0^1 \frac{d\zeta_{12}}{\zeta_{12}}\,\left(\zeta_{12}\right)^{-\lambda^{(12)}}
$$

[**P.B.**, F. Vazão; 24]

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
x_1 \bigodot x_2 = \int_{\mathbb{R}_+} \prod_{j=1}^{2} \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}} \left[\frac{dy_e}{y_e} y_e^{\beta} \right] \mu(y) \times
$$

$$
\times \frac{2(x_1 + x_2 + y_a + y_b + \lambda_G')}{(x_1 + x_2 + \lambda_G)(x_1 + x_2 + y_a + \lambda_G')(x_1 + x_2 + y_b + \lambda_G')(x_1 + y_a + y_b + \lambda_1')(x_2 + y_a + y_b + \lambda_2')}
$$

\n- \n
$$
\mu(y) \sim \left[\frac{\text{Vol}^2 \Sigma_2(y_e^2, P^2)}{\text{Vol}^2 \Sigma_1(P^2)} \right]^{\frac{d-3}{2}}
$$
\n
\n- \n
$$
\Gamma \implies \text{Volume of the triangle, and all its side, are positive}
$$
\n
$$
(y_a + y_b + P)(y_a + y_b - P)(y_a - y_b + P)(-y_a + y_b + P) \geq 0,
$$
\n
$$
y_a \geq 0, \quad y_b \geq 0, \quad P \geq 0
$$
\n
\n

[**P.B.**, F. Vazão; 24]

÷.

 299

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

$$
x_1 \bigodot x_2 = \int_{\mathbb{R}_+} \prod_{j=1}^{2} \left[\frac{dx_j}{x_j} x_j^{\alpha} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}} \left[\frac{dy_e}{y_e} y_e^{\beta} \right] \mu(y) \times
$$

$$
\times \frac{2(x_1 + x_2 + y_a + y_b + \lambda'_g)}{(x_1 + x_2 + \lambda'_g)(x_1 + x_2 + y_a + \lambda'_g)(x_1 + x_2 + y_b + \lambda'_g)(x_1 + y_a + y_b + \lambda'_1)(x_2 + y_a + y_b + \lambda'_2)}
$$

[**P.B.**, F. Vazão; 24]

イロト イ母 トイミト イミト ニヨー りんぺ

$$
\mathcal{I}_{\mathcal{G}} = \int_0^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} y_e^{\beta_e} \right] \mu_d(y) \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}
$$

[**P.B.**, F. Vazão; 24]

$$
\mathcal{I}_{\mathcal{G}} = \int_0^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} y_e^{\beta_e} \right] \mu_d(y) \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}
$$

The asymptotic structure of \mathcal{I}_G is captured by:

a nestohedron, which is determined by the underlying cosmological polytope P_G , and whose facets are fixed via subgraphs

$$
\mathfrak{W}^{(j_1\ \cdots \ j_{n_s^{(\mathfrak{g})}+n_e^{(\mathfrak{g})})}}=\left(\begin{smallmatrix} \lambda^{(j_1\ \cdots \ j_{n_s^{(\mathfrak{g})}+n_e^{(\mathfrak{g})})}}\\ \mathfrak{e}_{(j_1\ \cdots \ j_{n_s^{(\mathfrak{g})}+n_e^{(\mathfrak{g})}})} \end{smallmatrix}\right),\qquad \lambda^{(j_1\ \cdots \ j_{n_s^{(\mathfrak{g})}+n_e^{(\mathfrak{g})}})}=\sum_{\mathfrak{s}\in \mathcal{V}_{\mathfrak{g}}}\alpha_\mathfrak{s}+\sum_{\mathfrak{e}\in \mathcal{E}^{(L)}}\beta_\mathfrak{e}-\sum_{\mathfrak{g}'\in \text{(tubings)}}\tau_{\mathfrak{g}'}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}'}\gamma_{\mathfrak{g}'}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}'}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}}\gamma_{\mathfrak{g}}\gamma_{
$$

The integral diverges in the direction e if the related λ is > 0

the contour of the loop integration Γ , which selects the divergent directions among the W's of the nestohedron**KORKAR KERKER SAGA**

[**P.B.**, F. Vazão; 24]

$$
\mathcal{I}_{\mathcal{G}} = \int_0^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} y_e^{\beta_e} \right] \mu_d(y) \frac{\mathfrak{n}_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}
$$

This combinatorial picture allows to:

- straightforwardly determine both the directions along which \mathcal{I}_G can diverge and their degree of divergence;
- ² straightforwardly compute leading and subleading divergences (both in the IR and in the UV) via sector decomposition;
- the leading divergence in the IR are associated to the restriction of the underlying cosmological polytope onto special hyperplanes;
	- write a systematic substraction that produces IR-finte quantities.

Towards IR-finte computables

[**P.B.**, F. Vazão; 24]

KOD KAR KED KED E YOUN

indicates that two sites are collapsed into one, and their site-weight integration measure is shifted

Towards IR-finte computables

[**P.B.**, Vazão, '24]

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Towards IR-finte computables

[**P.B.**, Vazão, '24]

[**P.B.**, Vazão, '24]

KORKARYKERKER POLO

Towards IR-finte computables

Flat-space limit: This is the known result in scattering amplitudes which can be obtained from a IR-finite observable: the Wilson loop with a Lagrangian insertion.

[**P.B.**, Vazão, '24]

KORKAR KERKER SAGA

Towards IR-finte computables

Flat-space limit: This is the known result in scattering amplitudes which can be obtained from a IR-finite observable: the Wilson loop with a Lagrangian insertion.

Our systematic procedure automatically returns an IR finite flat-space limit despite \bullet the cosmological box integral might not a IR-divergent loop integral.

One loop corrections without integration

イロト 4 御 ト 4 差 ト 4 差 ト - 差 - 約 9 (^)

[**P.B.**, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

KO K K Ø K K E K K E K V K K K K K K K K K

$$
\mathcal{I}_{\mathcal{G}}\,=\,\int_{0}^{+\infty}\prod_{s\in\mathcal{V}}\left[\frac{dx_{s}}{x_{s}}\,x_{s}^{\alpha_{s}}\right]\int_{\Gamma}\prod_{e\in\mathcal{E}^{(L)}}\left[\frac{dy_{e}}{y_{e}}\,y_{e}^{\beta_{e}}\right]\,\mu_{d}(y)\,\frac{\mathfrak{n}_{\delta}(x+X,y)}{\prod_{\mathfrak{g}\subseteq\mathcal{G}}\left[q_{\mathfrak{g}}(x+X,y)\right]^{\tau_{\mathfrak{g}}}}
$$

[**P.B.**, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

$$
\mathcal{I}_{\mathcal{G}} = \int_0^{+\infty} \prod_{s \in \mathcal{V}} \left[\frac{dx_s}{x_s} x_s^{\alpha_s} \right] \int_{\Gamma} \prod_{e \in \mathcal{E}^{(L)}} \left[\frac{dy_e}{y_e} y_e^{\beta_e} \right] \mu_d(y) \frac{n_{\delta}(x + X, y)}{\prod_{\mathfrak{g} \subseteq \mathcal{G}} \left[q_{\mathfrak{g}}(x + X, y) \right]^{\tau_{\mathfrak{g}}}}
$$

can be expressed in terms of

$$
\text{(twisted period} \qquad \qquad \mathcal{I}^{(j)}_{\{\tau_{\mathfrak{g}}\}} := \int_{\Gamma} \mu_{d} \, \varphi \quad , \qquad \varphi := \frac{\displaystyle\prod_{e \in \mathcal{E}^{(L)}} dy_e}{\displaystyle\prod_{\mathfrak{g} \in \mathfrak{G}^{(j)} \cup \{e\}}} \qquad \qquad \qquad \mathcal{I}^{(j)}_{\{\tau_{\mathfrak{g}}\}}.
$$

Each of these integrals can be expressed as a finite linear combination of master integrals

$$
\mathcal{I}_{\{\tau_{\mathfrak{g}}\}}^{(j)} := \sum_{j=1}^{\nu} c_j \mathcal{J}_j, \qquad d\mathcal{J} = dA \mathcal{J}
$$

Canonical form: $d\mathcal{J} = \varepsilon dA \mathcal{J} \Rightarrow \mathcal{J} = \text{Pexp}\left\{\varepsilon \int_{\Gamma} dA\right\} \mathcal{J}_0$

[**P.B.**, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;

[**P.B.**, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;
- The factorisation property of such higher order operator determines the type; of solutions

[**P.B.**, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;
- The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

[**P.B.**, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;
- The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

[**P.B.**, G. Brunello, M. K. Mandal, P. Mastrolia, F. Vazão; 24]

KORKAR KERKER ST VOOR

- The system of differential equations has a block-triangular form, and for each block can be rewritten in terms of a higher order differential equation for a single \mathcal{J}_i ;
- The factorisation property of such higher order operator determines the type; of solutions
- Expressing the integrand in terms of triangulations of the cosmological polytope or its restrictions, allows to simplify the problem;

First clues on constraints on cosmological processes: perturbative unitarity, flat-space limit, factorisations, higher-codimensions singularities

General framework to have a direct formulation with IR safe observables

We scratched the surface of the one-loop structure: first glimpses of its analytic structure and its space of functions.