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2 (Quantum) consistency of the theory

E.g.: Coupling inflaton-fermions

a Infra-red effects
b Renormalisation
c Perturbation theory breakdown
d General consistency conditions
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⟨3, 4|Ô|1, 2⟩ := δ (p1 + p2 − p3 − p4)

Unitary S-matrix: Ŝ | ŜŜ† = Î = Ŝ†Ŝ
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wrong?

Wrong analytic structure

Non causal!
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+ . . .
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Why loops? A flat-space lesson

It is important to understand the analytic

structure of observables on general grounds

Constraints from
first principles

consistency conditions on
any reasonable theory

What is the relevant
space of functions?

Avoid the difficulties
of direct computation.

What is the best way of
asking these questions? A new language needed?



Why Combinatorics?

Deeper understanding of the physics encoded
into cosmological observables

Novel rules which can allow to go beyond the regime
in which the combinatorial description has been formulated
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Perturbation theory
η = 0

η = −∞

η



Cosmological Integrals
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qg(x , y)

Cosmology Loop
integration

Universal
integrand

Power-law FRW
λ̃(xs − Xs) ∼ (xs − Xs)α−1

External kinematics: Xs :=
∑
j∈s

∣∣⃗p(j)
∣∣, ye :=

∣∣∣ ∑
j∈se

p⃗(j)
∣∣∣ (e ∈ E \ {E (L)})

Loop momenta: ye1 := |⃗l |, ye2 := |⃗l + p⃗(2)|, . . . (e ∈ E (L))

qg(x , y) :=
∑
s∈Vg

xs +
∑

e∈Eext
g

ye

x1 x2 x3

y12 y23

x1 + x2 + y23



In this talk

1 Cosmological integrands: Singularities, combinatorics & computation

2 The IR/UV structure of cosmological integrals

3 One loop corrections without integration
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x1 x2
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x1 x2

ya
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ω (Y, PG) =
nδ(x , y)∏

g⊆G
qg(x , y)

∏
s∈V

dxs
∏
e∈E

dye

Vol{GL(1)}

(Weighted) cosmological polytopes capture

the singularity structure of IG
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From Graphs to Polytopes

A flavour of cosmological polytopes

x1 x2

y

x1 + x2 = 0

x1 + y = 0

y + x2 = 0

The singularities form a bounded region to which a function Ω is naturally associated

Ω =
1

(x1 + x2)(x1 + y)(y + x2)
≡ nδ

qGqg1qg2
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A flavour of cosmological polytopes
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q41 = 0
q23 = 0

q12 = 0

q34 = 0

n1(Y) = 0

Ω =
n1

q12q23q34q41
=

1
q12q34

[ 1
q23

+
1

q41

]
Linear relation

q12 + q34 = q23 + q41

Triangulation of the polytope
≡

Representation for the integrand
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n1(Y) = 0

Ω =
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q12q23q34q41
=

1
q12q34

[ 1
q23

+
1

q41
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Linear relation

q12 + q34 = q23 + q41

Point B:
{

q12 = 0
q34 = 0

Compatibility conditions:

Resq12=0Resq34=0Ω = 0 = Resq23=0Resq41=0Ω
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1
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∑
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1
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Example: {G◦} for a triangle graph

⇒

=

=

, , , = , ,

, = , ,
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From Graphs to Polytopes
[P.B., W. Torres Bobadilla; ’21]

x3

x5 x6 x7

x8

x9
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Ω =
∏
g∈G◦

1
qg(x , y)

∑
{Gc}

∏
g′∈Gc

1
qg′(x , y)

Compatibility conditions allow to:

1 write all the possible representations without spurious singularities

2 make manifest the symmetries that maps a simplex into another one

3 improve analytical/numerical efficiency of the integration.
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serving transformations

Symmetries of
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fk =
∫ b

a
d log R1 ◦ . . . ◦ d log Rk

S(fk) := R1 ⊗ . . . ⊗ Rk

Trascendental
function

Iterated
integral

Symbols
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W
′(2)

W
′(1)

W(2)

W(1)

W(12)

W(12) =

2α − 3
1
1

 , W(1) =

α − 2
1
0

 , W(2) =

α − 2
0
1

 , W
′(1) =

−α
−1
0

 , W
′(2) =

−α
0

−1

 ,

The integral diverges in the direction e if
the related λ is ≥ 0
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x1 x2

y12 =
∫

R+

2∏
j=1

[
dxj
xj

xα
j

]
1

(x1
1 x0

2 + x0
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1 x0

2 + Xg1x0
1 x0
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2 + Xg2x0
1 x0

2 )

W
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W
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E.g.: if λ(12) −→ 0: sector decomposition

Idiv
∆j,12 =

∫ 1

0

dζj
ζj

(ζj)
−λ(j)

1 + ζj
×

∫ 1

0

dζ12
ζ12

(ζ12)
−λ(12)

0

x2

x1
1

1



Towards a combinatorial RG: The IR/UV structure of IG
[P.B., F. Vazão; 24]

x1 x2 =
∫

R+

2∏
j=1

[
dxj
xj

xα
j

] ∫
Γ

∏
e∈E

[dye
ye

yβ
e

]
µ(y)×

× 2(x1 + x2 + ya + yb + XG)

(x1 + x2 + XG)(x1 + x2 + ya + XG)(x1 + x2 + yb + XG)(x1 + ya + yb + X1)(x2 + ya + yb + X2)

1 µ(y) ∼
[

Vol2Σ2(y2
e , P2)

Vol2Σ1(P2)

] d−3
2

2 Γ =⇒ Volume of the triangle, and all its side, are positive

(ya + yb + P)(ya + yb − P)(ya − yb + P)(−ya + yb + P) ≥ 0,

ya ≥ 0, yb ≥ 0, P ≥ 0

P

ya yb
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Towards a combinatorial RG: The IR/UV structure of IG
[P.B., F. Vazão; 24]

IG =
∫ +∞

0

∏
s∈V

[dxs
xs

xαs
s

] ∫
Γ

∏
e∈E (L)

[dye
ye

yβe
e

]
µd (y)

nδ(x + X , y)∏
g⊆G

[qg(x + X , y)]τg

The asymptotic structure of IG is captured by:

1 a nestohedron, which is determined by the underlying cosmological polytope PG ,
and whose facets are fixed via subgraphs

W
(j1 . . . j

n(g)s +n(g)e
)

=

λ
(j1 . . . j

n(g)s +n(g)e
)

e(j1 . . . j
n(g)s +n(g)e

)

 , λ
(j1 . . . j

n(g)s +n(g)e
)

=
∑
s∈Vg

αs +
∑

e∈E (L)

βe −
∑

g′∈(tubings)

τg′

The integral diverges in the direction e if
the related λ is ≥ 0

2 the contour of the loop integration Γ, which selects the divergent directions
among the W’s of the nestohedron



Towards a combinatorial RG: The IR/UV structure of IG
[P.B., F. Vazão; 24]

IG =
∫ +∞

0

∏
s∈V

[dxs
xs

xαs
s

] ∫
Γ

∏
e∈E (L)

[dye
ye

yβe
e

]
µd (y)

nδ(x + X , y)∏
g⊆G

[qg(x + X , y)]τg

This combinatorial picture allows to:

1 straightforwardly determine both the directions along which IG can diverge and
their degree of divergence;

2 straightforwardly compute leading and subleading divergences (both in the IR
and in the UV) via sector decomposition;

3 the leading divergence in the IR are associated to the restriction of the underlying
cosmological polytope onto special hyperplanes;

4 write a systematic substraction that produces IR-finte quantities.
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indicates that two sites are collapsed into one, and their site-weight integration measure is shifted
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Flat-space limit: This is the known result in scattering amplitudes which can be
obtained from a IR-finite observable: the Wilson loop with a Lagrangian insertion.
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Flat-space limit: This is the known result in scattering amplitudes which can be
obtained from a IR-finite observable: the Wilson loop with a Lagrangian insertion.

Our systematic procedure automatically returns an IR finite flat-space limit despite
the cosmological box integral might not a IR-divergent loop integral.



One loop corrections without integration
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IG =
∫ +∞

0
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s∈V

[dxs
xs

xαs
s

] ∫
Γ

∏
e∈E (L)

[dye
ye

yβe
e

]
µd (y)

nδ(x + X , y)∏
g⊆G

[qg(x + X , y)]τg

can be expressed in terms of

I (j)
{τg} :=

∫
Γ

µd φ , φ :=

∏
e∈E (L)

dye∏
g∈G(j)∪{e}

[qg(y)]τg
,(twisted period

integrals)

Each of these integrals can be expressed as a finite linear combination of master integrals

I (j)
{τg} :=

ν∑
j=1

cjJj , dJ = dA J

Canonical form: dJ = εdA J ⇒ J = Pexp
{

ε

∫
Γ

dA

}
J◦
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x1

x2 x3

Loop
integration Polylogs, Elliptics



Conclusion

First clues on constraints on cosmological processes:
perturbative unitarity, flat-space limit,

factorisations, higher-codimensions singularities

General framework to have a direct formulation
with IR safe observables

We scratched the surface of the one-loop structure:
first glimpses of its analytic structure and its space of functions.


