IMPERIAL

On the IR divergences on de Sitter space

Sebastian Cespedes
Imperial College London

Base on work with A Achucarro, A Davis, S Melville, G Palma and D-G Wang 2009.07874, 2112.14712, 2311.17790

Plus work in progress with G Kaplanek and T Colas

Outline

- Introduction
- IR divergences
- Stochastic Inflation
- Wavefunction approach to stochastic inflation

IR divergences on de Sitter

• Let's consider a massless scalar field ϕ . The two point function is given by

$$\langle \phi_k^2 \rangle' = \frac{H^2}{2k^3} (1 + k^2/(a_0 H_0)^2) \to \frac{H^2}{2k^3}$$

Two point function becomes constant on super horizon scales

• Let's consider a massless scalar field ϕ . The two point function is given by

$$\langle \phi_k^2 \rangle' = \frac{H^2}{2k^3} (1 + k^2/(a_0 H_0)^2) \to \frac{H^2}{2k^3}$$

 Let's consider interactions. This are computed using the In-In formalism

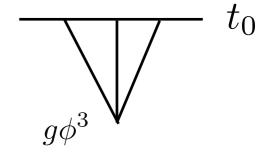
$$\langle \phi(\mathbf{k}_{1}, t_{0}) \dots \phi(\mathbf{k}_{n}, t_{0}) \rangle =$$

$$\langle T\left(e^{+i \int_{-\infty(1+i\epsilon)}^{t_{0}} dt H_{\text{int}}(t)}\right) \phi(\mathbf{k}_{1}, t_{0}) \dots \phi(\mathbf{k}_{n}, t_{0}) T\left(e^{-i \int_{-\infty(1+i\epsilon)}^{t_{0}} dt H_{\text{int}}(t)}\right) \rangle$$

• Let's consider a massless scalar field $\,\phi\,$. The two point function is given by

$$\langle \phi_k^2 \rangle' = \frac{H^2}{2k^3} (1 + k^2/(a_0 H_0)^2) \to \frac{H^2}{2k^3}$$

• Let's include a cubic interaction $V=rac{g}{3!}\phi^3$



$$\langle \phi^3(t_0) \rangle = -i \int_{-\infty}^{t_0} dt \langle [\phi^3(t_0), \mathcal{H}_{\text{int}(t)}] \rangle$$

At late times this leads to

$$\langle \phi_{k_1} \phi_{k_2} \phi_{k_3} \rangle' \sim \frac{H^3}{12} \frac{(k_1^3 + k_2^3 + k_3^3)}{k_1^3 k_2^3 k_3^3} (-2/3 + \gamma_E + \log(k_1 + k_2 + k_3)/(a_0 H_0))$$

Interaction does not decay after horizon exit

$$\langle \phi_{k_1}(t_0)\phi_{k_2}(t_0)\phi_{k_3}(t_0)\rangle'$$

$$= i\phi_{k_1}(t_0)\phi_{k_2}(t_0)\phi_{k_3}(t_0) \int dt a(t)^3 \phi_{k_1}^*(t)\phi_{k_2}^*(t)\phi_{k_3}^*(t) + cc$$

This problem implies that now loops get a time dependence

$$f_0 = \frac{1}{g\phi^3} = \frac{1}{g\phi^3} = \frac{1}{g\phi^3} = \frac{1}{g\phi^3} + \frac{1}{g\phi^3} = \frac{1}{g\phi^3} + \frac{1}{g\phi^3}$$

IR divergences

- This arise due to interactions not decaying after horizon exit.
- For example, interactions with two derivatives are IR safe
- Different types of IR divergences
 - Time integrals
 - Momentum integrals

$$\int_{g\phi^3} \int_{g\phi^3} \sim \frac{H^2}{2k^3} \frac{g^2}{72\pi^2 H^2} \log(k/a_0 H_0)^2 \log(kL)$$

IR divergences and inflation

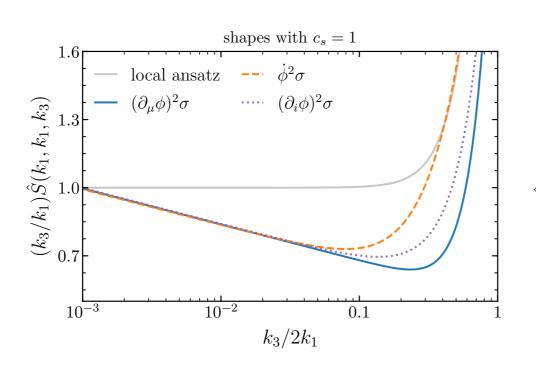
- The existence of IR divergences imply that perturbation theory breaks down at late times.
- IR divergences do not appear in single field inflation due to the non-linearly realised shift symmetry.
- Curvature field is constant on superhorizon scales

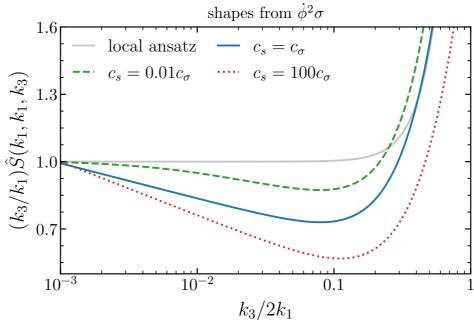
• Eg. In
$$\dot{\phi}^3$$
 $\langle \phi_{k_1} \phi_{k_2} \phi_{k_3} \rangle' = i \phi_{k_1}(t_0) \phi_{k_2}(t_0) \phi_{k_3}(t_0) \int dt a(t)^3 \dot{\phi}_{k_1}^*(t) \dot{\phi}_{k_2}^*(t) \dot{\phi}_{k_3}^*(t) + cc$

$$\langle \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \rangle \sim \frac{H^3}{k_1 k_3 k_3 k_T^3} \text{Im}(2i + 2(k_T)/(a_0 H_0) - i(k_T)^2/(a_0 H_0)^2)$$

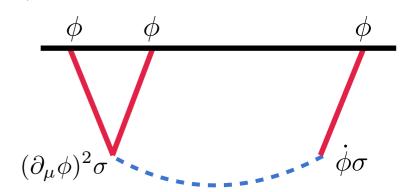
Maldacena 2003 Urakawa Tanaka 2009,2013 Senatore Zaldarriaga 2012 Assassi, Baumann Green 2015

Light spectator fields





- IR divergences can be important for phenomenology
- Superhorizon growth of all correlation functions
- If the field has a mass the superhorizon growth will eventually stop



$$S(k_1, k_2, k_3) \propto \frac{1}{k_1^3 k_2^3 k_3^3} \left[\left(\gamma_E - 3 - \log(-k_t \eta_0) \right) \left(k_1^3 + k_2^3 + k_3^3 \right) + k_t e_2 - 4e_3 + \left(k_2^3 + k_3^3 \right) \log(-2k_1 \eta_0) + \left(k_1^3 + k_3^3 \right) \log(-2k_2 \eta_0) + \left(k_1^3 + k_2^3 \right) \log(-2k_3 \eta_0) \right]$$

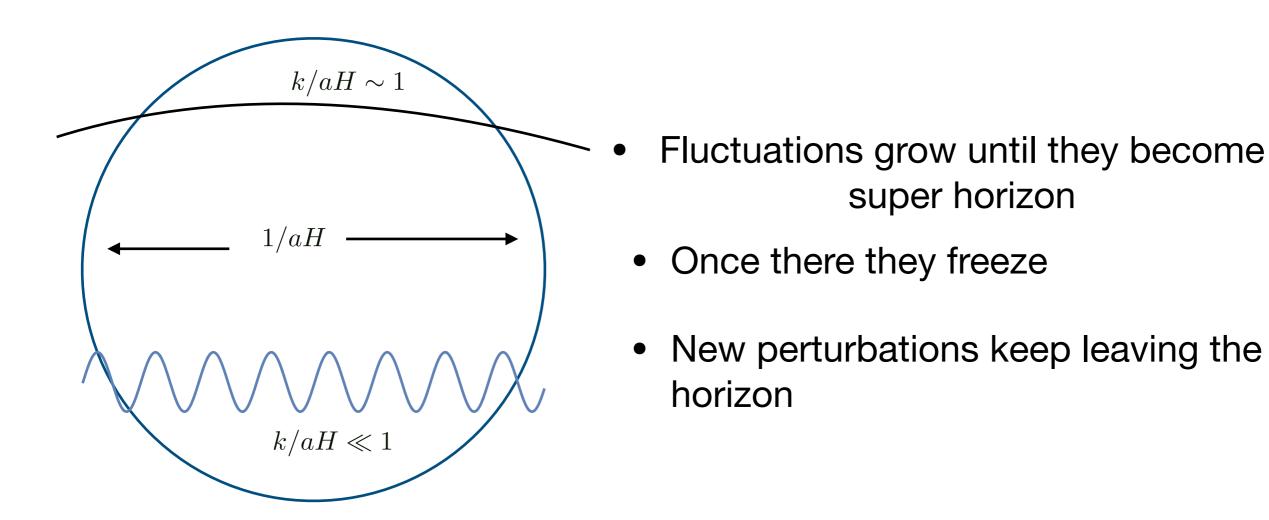
Chen and Wang '09 Arkani-Hamed and Maldacena '15 Wang, Pimentel and Achucarro '22

IR divergences

- IR Divergences are ubiquitous in dS spaces, but do not appear on single-field inflation.
- They appear also with massive fields (Eg. Three point function with conformally coupled fields)
- The history is different for other fields coupled to inflation
- Two different origins. At tree-level only 'time' IR secular divergences $\log(-k\eta_0)$
- It is possible to regularise them using boundary counterterms (very similar to renormalised perturbation theory in AdS/CFT)

Stochastic inflation

Fluctuations during inflation

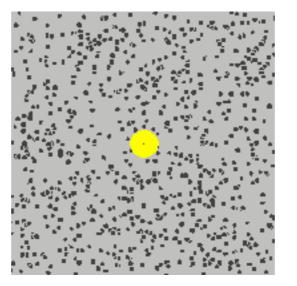


Superhorizons perturbations can be thought of as classical perturbations being seeded by quantum short wavelength perturbations

Stochastic inflation

Dynamics of long wavelength perturbations as brownian

motion



 Short modes act as random Gaussian noise encoding short distance effects.

Fokker-Planck equation

Langevin equation can be written as a Fokker-Planck equation

$$\frac{d}{dt}P(\phi,t) = \frac{1}{3H}\frac{\partial}{\partial\phi}(V'(\phi)P(\phi,t)) + \frac{H^3}{8\pi^2}\frac{\partial^2}{\partial\phi^2}P(\phi,t)$$

Solving the associated Fokker-Planck equation we find that,

$$\lim_{t \to \infty} P(\phi) \sim \exp\left(-\frac{8\pi^2 V(\phi)}{3H^4}\right)$$

Eg
$$V(\phi) = \frac{\lambda}{4}\phi^4$$

$$P(\phi) \sim \exp\left(-\frac{\pi^2}{6H^4}\lambda\phi^4\right)$$

- Probability for the field depends on the classical potential.
- Highly non linear and goes beyond perturbation theory

Loops from FP equation

• We can solve the Fokker-Planck equation $\langle \phi^n \rangle = \int d\phi \phi^n P(\phi)$ pertubatively

$$\langle \phi^n \rangle = \int d\phi \phi^n P(\phi)$$

$$\langle \phi^2 \rangle = \frac{H^2}{4\pi^2} \log a - \frac{\lambda H^2}{144\pi^4} (\log a)^3 + \frac{\lambda^2 H^2}{2880\pi^6} (\log a)^5 + \mathcal{O}(\lambda^3 (\log a)^7)$$

First term is the variance

$$\Lambda(t) = \epsilon a(t) H$$

$$\sigma^2 \equiv \langle \phi_l(\mathbf{x}=0)^2 \rangle = \int_{\mathbf{k}} \frac{H^2}{2k^3} = \frac{H^2}{4\pi^2} \log(\Lambda L_{\rm IR}) \; .$$
 IR
$$L_{\rm IR}^{-1} = a(t_i)H$$
 Storeb

Starobinsky '83, Starobinsky and Yokoyama '92

Loops from FP equation

We can solve the Fokker-Planck equation pertubatively

$$\langle \phi^2 \rangle = \frac{H^2}{4\pi^2} \log a - \frac{\lambda H^2}{144\pi^4} (\log a)^3 + \frac{\lambda^2 H^2}{2880\pi^6} (\log a)^5 + \mathcal{O}(\lambda^3 (\log a)^7)$$

Second correspond to loop correction to the two point function

$$\langle \phi^2 \rangle_{1-\text{loop}} = \frac{\lambda}{4\pi^2} \frac{H^2}{k^3} \log(k/aH) \log\left(\frac{k}{aH}(aHL)^2\right)$$

Time dependence also comes from the loop IR divergence

Perturbation theory vs stochastic inflation

- Perturbation theory contains IR divergences associated to the fact that perturbations keep entering the horizon
- Perturbation theory breaks down for $\lambda(\log a)^2 \gg 1$
- The common lore is that stochastic inflation sums all loops rendering finite results
- At late times there is an equilibrium solution

$$V(\phi) = \frac{\lambda}{4}\phi^4 \qquad \langle \phi^2 \rangle \sim \frac{H^2}{\lambda^{1/2}}$$

Equilibrium solution is de Sitter invariant

Starobinsky and Yokoyama 1994
Baumgart and Sundrum 2019
Gorbenko and Senatore 2019
Cohen and Green 2020

- We would like to understand better how to go from perturbation theory to the stochastic theory
- This can be phrased as "what does the stochastic theory computes"
- Might look like the semiclassical regime but we would like to understand this better

Fokker-Planck Equation

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial \phi} \left(\frac{V_{\phi}}{3H} P \right) + \frac{H^3}{8\pi^2} \left(\frac{\partial^2 P}{\partial \phi^2} \right)$$

- stochastic effects
- non-perturbative
- equilibrium from re sum

Cosmological bootstrap

$$P = |\Psi|^2$$

$$\Psi[\phi] = \exp\left[\sum_{n=2}^{\infty} \frac{1}{n!} \int_{\mathbf{k}_1,...,\mathbf{k}_n} \psi_n(\mathbf{k}_1,...,\mathbf{k}_n) \phi_{\mathbf{k}_1} \cdots \phi_{\mathbf{k}_n}\right]$$

- related to correlators
- perturbative
- secular growth

Burgess et al '09, '10, '14 Gorbenko and Senatore '19 SC, Davis and Wang '23

Semiclassical approximation

 When dealing with a quantum system, when we expect the nature of the system to be well approximated by the classical trajectory

$$\Psi[\phi(\vec{x})] = \int_{\substack{\Phi(\eta_0) = \phi \\ \Phi(-\infty) = 0}} \mathcal{D}\Phi \exp\left(-\frac{i}{\hbar}S[\Phi]\right) \simeq \exp\left(-\frac{i}{\hbar}S_0[\Phi_{\text{cl}}]\right)$$

$$S[\Phi] = S_0[\Phi_{\text{cl}}] + \hbar S_1[\Phi_{\text{cl}}] + \dots$$

- The semiclassical action can be non linear and the approximation can go beyond perturbation theory
- Our goal: In which sense are is stochastic inflation related to the semiclassical approximation.

Let's consider scalar field on de Sitter evolving through the Schrödinger equation

$$i\hbar \frac{d}{dt} \Psi[\phi] = H \Psi[\phi]$$

$$\begin{split} \Psi[\phi(\vec{x})] &= \int \mathcal{D}\Phi \exp\left(-\frac{i}{\hbar}S[\Phi]\right) \\ \Phi(\eta_0) &= \phi \\ \Phi(-\infty) &= 0 \end{split}$$
 Boundary conditions

Asymptotic future

$$\eta = \eta_0$$

$$\Phi(\eta_0) = \phi_0$$

$$\eta = -\infty$$

$$\Phi(-\infty + i\epsilon) = 0$$

Bunch-Davies vacuum

$$S[\Phi] = S_0[\Phi_{\rm cl}] + \hbar S_1[\Phi_{\rm cl}] + \dots$$

Given a classical
$$\Psi[\phi(\vec{x})] = \int\limits_{\Phi(\eta_0) = \phi} \mathcal{D}\Phi \exp\left(-\frac{i}{\hbar}S[\Phi]\right) \simeq \exp\left(-\frac{i}{\hbar}S[\Phi_{\mathrm{cl}}]\right)$$
 solution

$$(\Box - m^2)\Phi = -\frac{1}{\sqrt{-g}}\frac{\delta S_{\rm int}}{\delta \Phi} \longrightarrow \Phi_{\rm cl}(\eta, \mathbf{k}) = \phi_{\mathbf{k}} K(k, \eta) + \frac{i}{\hbar} \int \mathrm{d}\eta' G(k; \eta, \eta') \frac{\delta S_{\rm int}}{\delta \Phi_{\mathbf{k}}(\eta')} \bigg|_{\Phi = \Phi_{\rm cl}}$$
 bulk-to-bulk

Path integral
$$(\Box - m^2)K_{\varphi}(\mathbf{x},t) = 0$$
, with $\lim_{t \to t_0} K(\mathbf{x},t) = 1$, $\lim_{t \to -\infty(1+i\epsilon)} Ki(\mathbf{x},t) = 0$
Boundary conditions $(\Box - m^2)G(x,x') = \frac{i}{\sqrt{-g}}\delta(t-t')\delta^{(3)}(\mathbf{x}-\mathbf{x}')$ with $\lim_{t,t'\to -\infty(1+i\epsilon)} G(x,x') = \lim_{t,t'\to t_0} G(x,x') = 0$

 The semiclassical action generates only tree-level wavefunction coefficients

$$\Psi[\phi(\vec{x})] \simeq \exp\left(-\frac{i}{\hbar}(S_0[\Phi_{\rm cl}] + \hbar S_1[\Phi_{\rm cl} + \dots]\right)$$

$$S_0[\Phi_{\text{cl}}] = \frac{1}{2!} \int_{\mathbf{k}} \psi_2 \phi_k^2 + \frac{1}{3!} \int_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3} \psi_3 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} + \frac{1}{4!} \int_{\mathbf{k}_1, \dots, \mathbf{k}_4} \psi_4 \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} \phi_$$

Wavefunction coefficients

$$\psi_2' = \frac{ik^2}{H^2\eta_0} - \frac{k^3}{H^2} + \mathcal{O}(\eta_0)$$

$$\psi_3' = -\frac{i}{3H^4\eta_0^3} - \frac{i(k_1^2 + k_2^3 + k_3^2)}{2H^4\eta_0} - \frac{1}{18H^4} (k_1^2(k_2 + k_3) + k_1)(k_2^2 - k_2k_3 + k_3^2)$$
$$-\frac{1}{18H^4} (k_1^3 + k_2^3 + k_3^3)(8 + 6\gamma_E - 3i\pi + \log((k_1 + k_2 + k_3)\eta_0)) + \mathcal{O}(\eta_0)$$

- Exchange diagrams are in general very cumbersome
- All IR divergent terms except the last one are phases

1-loop wavefunction

• Loop corrections are generated by quantum terms and are proportional to higher powers of $\,\hbar$

$$\Psi[\phi(\vec{x})] \simeq \exp\left(-\frac{i}{\hbar}(S_0[\Phi_{\rm cl}] + \hbar S_1[\Phi_{\rm cl}] + \dots\right)$$

$$\psi_2^{1-\text{loop}} + \psi_3^{1-\text{loop}} + \dots$$

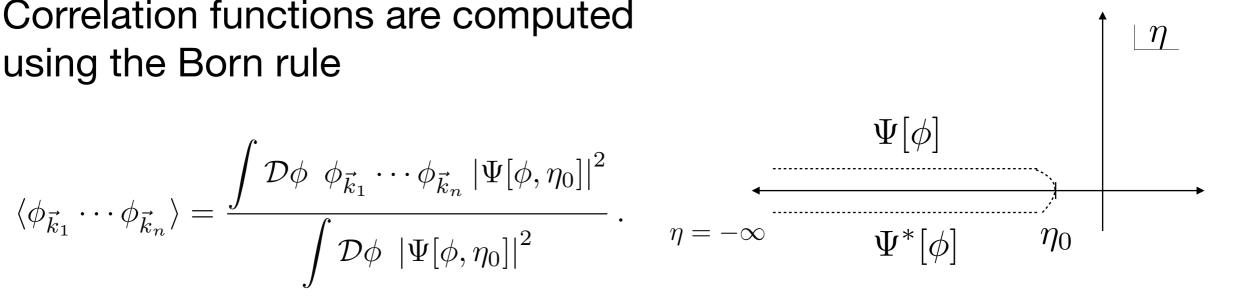
• Quantum corrections are generated by the functional determinant as in the usual Wilsonian EFT $S_1[\Phi_{\rm cl}] = i {
m Tr} \log \left(\frac{\delta^2 S}{\delta \Phi^2} \right)$

$$S_1 \supset -ig^2 \int d\eta a(\eta)^4 \int d\eta' a(\eta')^4 \int_{\mathbf{k},\mathbf{q}} G(k,\eta,\eta') G(|\mathbf{k}+\mathbf{q}|,\eta,\eta') \Phi(k,\eta) \Phi(k,\eta')$$

Correlation functions

- The wave function is not an observable by itself but we can define $P[\phi_k] \sim |\Psi[\phi]|^2$
- The correct prescription is defined using the In-In formalism
- Correlation functions are computed using the Born rule

$$\langle \phi_{\vec{k}_1} \cdots \phi_{\vec{k}_n} \rangle = \frac{\int \mathcal{D}\phi \ \phi_{\vec{k}_1} \cdots \phi_{\vec{k}_n} \left| \Psi[\phi, \eta_0] \right|^2}{\int \mathcal{D}\phi \ \left| \Psi[\phi, \eta_0] \right|^2}.$$



• Eg.
$$\langle \phi_k^2 \rangle = \frac{1}{2 \mathrm{Re}(\psi_2)} = \frac{H^2}{2 k^3}$$

Correlation functions

Then we have
$$\langle \phi_{\mathbf{k}} \phi_{-\mathbf{k}} \rangle' = -\frac{1}{2 \operatorname{Re} \psi_2'(k)} \,,$$

$$\langle \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \rangle' = -\frac{\operatorname{Re} \psi_3'(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)}{4 \operatorname{Re} \psi_2'(k_1) \operatorname{Re} \psi_2'(k_2) \operatorname{Re} \psi_2'(k_3)}$$

$$\langle \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} \rangle' = \frac{\operatorname{Re} \psi_4'(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4)}{8 \prod_{a=1}^4 \operatorname{Re} \psi_2'(k_a)} - \langle \phi_{\mathbf{k}_1} \phi_{\mathbf{k}_2} \phi_{\mathbf{k}_3} \phi_{\mathbf{k}_4} \rangle_{\mathrm{d}}' \,,$$

Eg. 3-point correlation

$$\langle \phi_{k_1} \phi_{k_2} \phi_{k_3} \rangle' \sim \frac{H^3}{12} \frac{(k_1^3 + k_2^3 + k_3^3)}{k_1^3 k_2^3 k_3^3} (-2/3 + \gamma_E + \log(k_1 + k_2 + k_3) \eta_0)$$

- Phases do not contribute to the correlation function
- Correlation function has a secular divergence

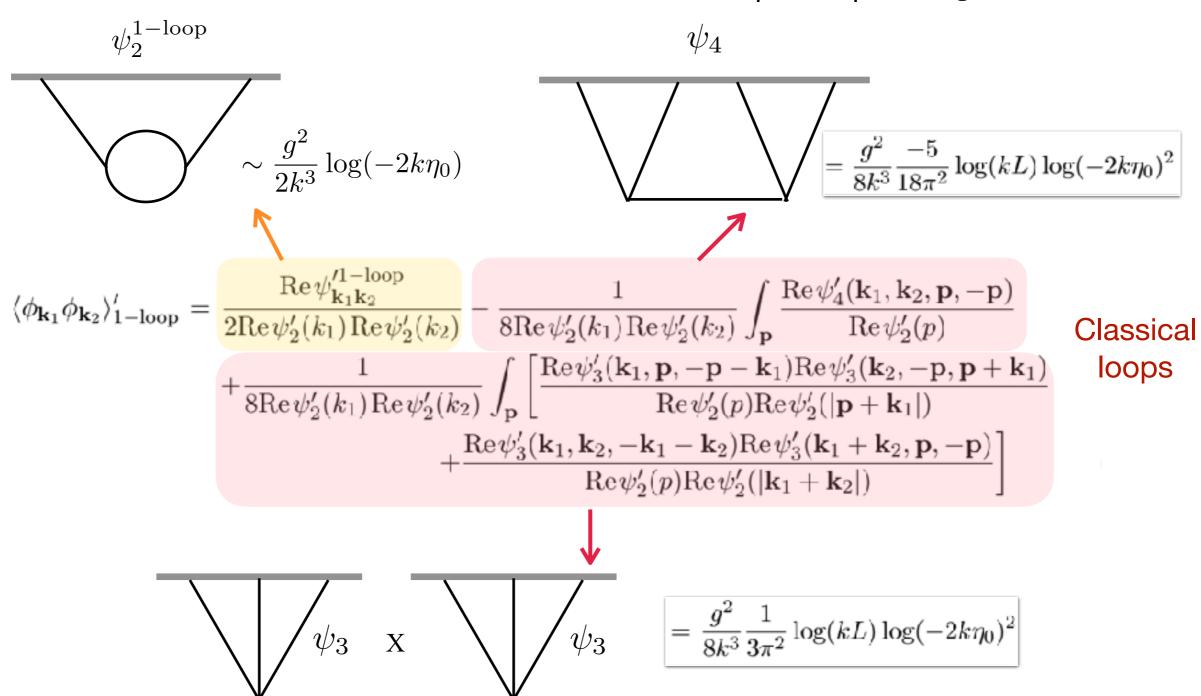
Loops from wavefunctions

- Different wave functions coefficients gets mixed up when computing correlation functions
- Loop corrections contains term from the classical and the quantum effective action
- Eg. $V = g\Phi^3/3!$

$$\langle \phi_{\mathbf{k}} \phi_{-\mathbf{k}} \rangle^{1-\text{loop}} = \frac{\psi_{2}^{1-\text{loop}}}{+ \sqrt{\psi_{3}}} + \frac{\psi_{2}^{1-\text$$

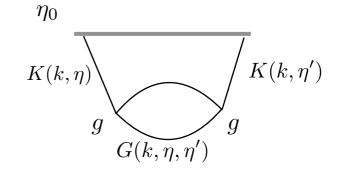
Loops in correlators

From Wavefunction to Correlators: One-Loop example for $\,g\Phi^3\,$



Wavefunction is IR safe

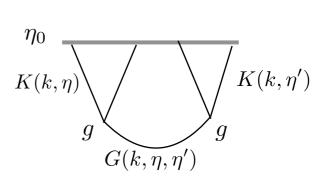
- Classical contributions have a IR loop divergence
- What we saw is a consequence of a more general result: there are no IR loop divergences in wave function coefficients



$$\psi_n^{L-\text{loop}} \sim \int d\eta_1 ... d\eta_m a(\eta_1)^4 ... a(\eta_m)^4 K(k_1, \eta_1) ... K(k_n, \eta_m)$$

$$\int_{\mathbf{p_1}, ..., \mathbf{p_L}} G(p_1, \eta_a, \eta_b) ... G(p_L, \eta_c, \eta_d) G(|\mathbf{p_x} + \mathbf{k_y}|, \eta_e, \eta_f) ...$$

$$\lim_{p \to 0} G(p, \eta, \eta') = -\frac{i}{6} H^2(\eta^3 + \eta'^3) + \mathcal{O}(p)$$



 The highest IR divergence terms are in the semiclassical wavefunction

$$\Psi[\phi(\vec{x})] \simeq \exp\left(-\frac{i}{\hbar}(S_0[\Phi_{\rm cl}] + \hbar S_1[\Phi_{\rm cl}] + \dots\right)$$

SC, Davis, Wang (23)

Gorbenko and Senatore 2019

Power counting argument

 To compare to the stochastic formalism let us take a look at the long wavelength correlation functions.

$$\sigma^2 \equiv \langle \phi_l(\mathbf{x} = 0)^2 \rangle = \int_{\mathbf{k}}^{\Lambda(t)} \frac{\Omega_{\Lambda}(k)}{2 \text{Re} \psi_2(k)} = \frac{H^2}{4\pi^2} \log(\Lambda L_{\text{IR}}) \ .$$

$$\downarrow \text{IR}$$

$$L_{\text{IR}}^{-1} = a(t_i)H$$

Thus

$$\langle \phi_l^2 \rangle = \frac{H^2}{4\pi^2} \log a(t)$$
 $\langle \phi^2 \rangle = \frac{H^2}{4\pi^2} \log a - \frac{\lambda H^2}{144\pi^4} (\log a)^3 + \frac{\lambda H^2}{64\pi^6} (\log a)^2 + \mathcal{O}(\lambda^3 (\log a)^7)$

Semiclassical limit

- We have seen that the semiclassical wavefunction grows larger than all quantum corrections
- We can understand this as defining the coupling $\tilde{\lambda} = \lambda (\log a)^2$

$$\Psi \sim \exp\left(i\tilde{S} + \frac{i}{a}\tilde{S}_1 + \mathcal{O}(a^{-2})\right)$$

• In the limit $\lambda \to 0$, $\log a \to \infty$, $\tilde{\lambda} \to \text{const.}$ the semiclassical action dominates and we can neglect quantum corrections

$$\langle \phi^2 \rangle = \frac{H^2}{4\pi^2} \log a \left(1 - \frac{\tilde{\lambda}}{36\pi^2} + \frac{\tilde{\lambda}}{16\pi^2} (\log a)^{-1} + \mathcal{O}(\tilde{\lambda}^3) \right)$$

Beyond perturbation theory

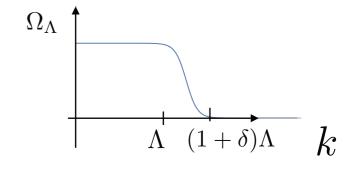
Beyond perturbation theory

 We can remove the short wavelength modes directly from the partition function and consider a simpler object

$$P_{\Lambda}[\phi, t] = e^{W_0[\phi] + W_I[\phi]}$$

$$W_{0} = \int_{\mathbf{k}} \operatorname{Re} \, \psi_{2}(k) \Omega_{\Lambda}^{-1}(k) \, \phi_{\mathbf{k}} \phi_{-\mathbf{k}} ,$$

$$W_{I} = \sum_{n=3}^{\infty} \frac{1}{n!} \int_{\mathbf{k}_{1},...,\mathbf{k}_{n}} 2 \operatorname{Re} \, \psi_{n}^{\Lambda}(\mathbf{k}_{1},...,\mathbf{k}_{n},t) \, \phi_{\mathbf{k}_{1}} \cdots \phi_{\mathbf{k}_{n}}$$



This is the semiclassical limit of

$$P[\phi_l] = \int D\phi_l \,\,\delta\left(\phi_l - \int \frac{d^3k}{(2\pi)^3} \Omega_k \phi_k\right) |\Psi(\phi_k)|^2$$

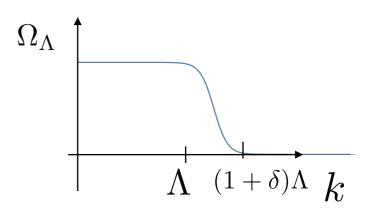
Beyond perturbation theory

We can remove the short wavelength modes directly from the partition function and consider a simpler object

$$P_{\Lambda}[\phi, t] = e^{W_0[\phi] + W_I[\phi]}$$

$$W_{0} = \int_{\mathbf{k}} \operatorname{Re} \, \psi_{2}(k) \Omega_{\Lambda}^{-1}(k) \, \phi_{\mathbf{k}} \phi_{-\mathbf{k}} ,$$

$$W_{I} = \sum_{n=3}^{\infty} \frac{1}{n!} \int_{\mathbf{k}_{1},...,\mathbf{k}_{n}} 2\operatorname{Re} \, \psi_{n}^{\Lambda}(\mathbf{k}_{1},...,\mathbf{k}_{n},t) \, \phi_{\mathbf{k}_{1}} \cdots \phi_{\mathbf{k}_{n}}$$



• The time derivative is
$$\frac{d}{dt}P_{\Lambda}[\phi,t] = \frac{\partial}{\partial t}P_{\Lambda}[\phi,t] + \dot{\Lambda}\frac{\partial}{\partial \Lambda}P_{\Lambda}[\phi,t]$$

Fokker-Planck from the wave function

The partial derivative is given by the Hamiltonian unitary evolution

$$\frac{\partial P[\phi, \chi, t]}{\partial t} = [H, P] = -\int d^3x \frac{\delta}{\delta \phi(\vec{x})} \left(\Pi_{\phi} P[\phi, \chi, t] \right)$$

 Can be written as a field derivative over the long wavelength momentum

$$\frac{\partial P_{\Lambda}}{\partial t} = -\frac{1}{a^3} \int d^3x d^3x' \int_{\mathbf{k}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')} \Omega_{\Lambda}(k) \frac{\delta}{\delta\phi_l(\mathbf{x})} \Pi_l(\mathbf{x},t) P_{\Lambda} = -\int d^3x \frac{\delta}{\delta\phi_l(\mathbf{x})} \left(\dot{\Phi}_l(\mathbf{x},t) P_{\Lambda}\right)$$

• In general this term is non linear $\dot{\Phi} \approx -\frac{V'(\Phi)}{3H}$

Polchinski RG equation

 In QFT one can study the effect of removing high energy modes directly from the regulated generating functional

$$Z_{\Lambda} = \int D\varphi e^{-\frac{1}{2} \int_{\mathbf{k}} \frac{1}{\Omega_{\Lambda}} \varphi_{\mathbf{k}} G_{k}^{-1} \varphi_{-\mathbf{k}} - S_{\text{int}}}$$

Moving the cutt-off doesn't affect observable thus,

$$\Lambda \frac{d}{d\Lambda} Z_{\Lambda} = 0$$

This implies an equation for the interactions

$$\Lambda \frac{d}{d\Lambda} e^{-S_{\rm int}^{\Lambda}} = -\frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \frac{d\Omega_{\Lambda}}{d\ln \Lambda} G_k \frac{\delta^2}{\delta \varphi_{\mathbf{k}} \delta \varphi_{-\mathbf{k}}} e^{-S_{\rm int}}$$

Polchinski RG equation

If we rewrite it as,

$$\Lambda \frac{d}{d\Lambda} S_{\text{int}}^{\Lambda} = -\frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \frac{d\Omega_{\Lambda}}{d\ln \Lambda} G_k \left(\left(\frac{\delta}{\delta \phi_k} S_{\text{int}} \right)^2 + \frac{\delta^2 S_{\text{int}}}{\delta \varphi_{\mathbf{k}} \delta \varphi_{-\mathbf{k}}} \right)$$

Flow equation for integrating out high energy degrees of freedom

Polchinsky equation for correlators

- In the case of cosmology we have to taken into account the different contour
- At tree level we can use that for $P_{\Lambda}[\phi,t]=e^{W_0[\phi]+W_I[\phi]}$

$$P_{\Lambda}[\phi,t] = e^{W_0[\phi] + W_I[\phi]}$$

$$\frac{d}{d\ln\Lambda} \int D\phi P_{\Lambda}[\phi, t] = 0$$

This implies a Polchinsky RG type equation.

$$e^{W_0} \frac{de^{W_I}}{d\log\Lambda} = \frac{1}{4} \int_{\mathbf{k}} \frac{d\Omega_{\Lambda}}{d\log\Lambda} \frac{1}{\operatorname{Re}\psi_2} \left[\left(\frac{\delta^2}{\delta\phi_{\mathbf{k}}\delta\phi_{-\mathbf{k}}} e^{W_I} \right) e^{W_0} - 2\frac{\delta}{\delta\phi_{\mathbf{k}}} \left(e^{W_0} \frac{\delta e^{W_I}}{\delta\phi_{-\mathbf{k}}} \right) \right]$$

Extra boundary terms, allows matching with correlation functions

Fokker-Planck equation

The Polchinski equation can be rewritten as

$$\frac{d}{d\ln\Lambda}P_{\Lambda} = -\frac{1}{4} \int_{\mathbf{k}} \frac{1}{\operatorname{Re}\psi_2} \frac{d\Omega_{\Lambda}}{d\ln\Lambda} \frac{\delta^2}{\delta\phi_{\mathbf{k}}\delta\phi_{-\mathbf{k}}} P_{\Lambda}$$

Joining both terms we recover the Fokker-Planck equation

$$\frac{d}{dt}P_{\Lambda}[\phi,t] = \frac{\partial}{\partial t}P_{\Lambda}[\phi,t] + \dot{\Lambda}\frac{\partial}{\partial \Lambda}P_{\Lambda}[\phi,t] \qquad \begin{cases} \dot{\Lambda}\frac{\partial}{\partial \Lambda}P_{\Lambda}[\phi,t] = \frac{H^{3}}{8\pi^{2}}\frac{\partial^{2}P_{\Lambda}}{\partial \phi^{2}} \\ \frac{\partial}{\partial t}P_{\Lambda}[\phi,t] = -\frac{\partial}{\partial \phi}\left(\Pi_{\Lambda}P_{\Lambda}\right) = \frac{\partial}{\partial \phi}\left(\frac{V_{\phi}}{3H}P_{\Lambda}\right) \end{cases}$$

 Fokker-Planck equation is a summation of (semi classical) terms

Fokker-Planck equation

 Joining both terms we recover the usual Fokker-Planck equation

$$\frac{d}{dt}P_{\Lambda}[\phi,t] = \frac{\partial}{\partial\phi}\left(\frac{V_{\phi}}{3H}P_{\Lambda}\right) + \frac{H^3}{8\pi^2}\frac{\partial^2 P_{\Lambda}}{\partial\phi^2}$$

Starobinsky '83, Starobinsky and Yokoyama '92

We can check by solving in perturbation theory

$$\langle \phi^2 \rangle = \frac{H^2}{4\pi^2} \log a - \frac{\lambda H^2}{144\pi^4} (\log a)^3 + \frac{\lambda^2 H^2}{2880\pi^6} (\log a)^5 + \mathcal{O}(\lambda^3 (\log a)^7)$$

SC. Davis, Wang 2023

Matches with classical loops

 Higher order quantum corrections are subleading and not considered in this equation. See however

> Gorbenko and Senatore '19 Mirbabayi '20 Green and Cohen '21

Quantum corrections

- In order to go beyond the semiclassical wavefunction we need to to compute the 2PI effective action
- The effect of the long modes acts as a mass for the short modes dressing the propagators

$$\left(-\Box + \frac{\lambda}{6}\langle\phi_r^2\rangle\right)G^K(x,y) = i\delta(x,y) + \mathcal{O}(\lambda^2)$$

This changes the diffusion term

Diff =
$$\frac{H^3}{8\pi^2} \frac{\partial^2}{\partial \phi^2} \left(\left(1 + \frac{2\lambda}{H^2} (\log \Lambda - \psi(3/2)) \phi^2 \right) P(\phi) \right)$$
,

Gorbenko and Senatore '19 Mirbabayi '20 Green and Cohen '21 SC and Colas (In progress)

Conclussions

- We have showed how to recover the Fokker-Planck equation from the wavefunction of the universe approach
- The relation between the semiclassical action and the stochastic theory becomes manifest
- The resumption of IR divergent terms is achieved through a Fokker-Planck equation
- This approach is non perturbative and can help to compute the whole PDF for a given EFT
- Many directions to follow (compute corrections, phenomenological implications)

In-In formalism

- This method is equivalent to the usual in-in formalism.
- Defining the partition function

$$Z[J_1, J_2] = \int D\phi_k \int_{BD}^{\phi_k} \mathcal{D}\Phi_1 \int_{BD}^{\phi_k} \mathcal{D}\Phi_2 e^{iS[\Phi_1] - iS[\Phi_2]} e^{i\int J_1\Phi_1 - i\int J_2\Phi_2}$$

Solving the e.o.m with sources

$$Z[J_1, J_2] = \int \mathcal{D}\phi_k \exp\left(-\int_{\mathbf{k}} \psi_{\varphi}^{(2)} \phi_k^2 + i \int_{\mathbf{k}} \int dt \left(J_1(t, \mathbf{k}) K(t, \mathbf{k}) - J_2(t, \mathbf{k}) K^*(t, \mathbf{k})\right) \phi_k - \frac{1}{2} \int_{\mathbf{k}} \int dt dt' J_1(t, \mathbf{k}) G(t, t', \mathbf{k}) J_1(t', \mathbf{k}) - J_2(t, \mathbf{k}) G^*(t, t', \mathbf{k}) J_2(t', \mathbf{k})\right)$$

This leads to

$$Z[J_1, J_2] = \exp\left(-\frac{1}{2} \int_{\mathbf{k}} \int dt dt' [J_1(t)\Delta_{++}(\mathbf{k}, t, t')J_1(t') - J_2(t)\Delta_{--}(\mathbf{k}, t, t')J_2(t') + J_1(t)\Delta_{+-}(\mathbf{k}, t, t')J_2(t')]\right)$$

General loop results

$$\langle \phi^{n} \rangle_{L-\text{loop}} \sim \frac{\text{Re } \psi_{n}^{L-\text{loop}}}{(\text{Re}\psi_{2})^{n}} + \int_{\mathbf{p_{1},...,p_{a}}} \frac{(\text{lower-order loop }\psi)}{\text{Re }\psi_{2}...\text{Re }\psi_{2}} + ...$$

$$+ \int_{\mathbf{p_{1},...,p_{b}}} \frac{(\text{exchange }\psi)}{\text{Re }\psi_{2}...\text{Re }\psi_{2}} + ... + \int_{\mathbf{p_{1},...,p_{L}}} \frac{(\text{contact Re }\psi_{3})^{V}}{(\text{Re}\psi_{2})^{(3V+n}/2})^{V}$$

$$\propto \lambda^{V} \log(kL_{\text{IR}})^{L} \log(-k\eta_{0})^{V}$$

in agreement with Baumgart, Sundrum 2019

IR-divergent correlators are always dominated by Classical loops

