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Introduction

e Let’s consider a massless scalar field @ . The two point
function is given by
H? H?

(61 = g 1+ K/ (a0Ho)*) = 5y

 Two point function becomes constant on super horizon
scales



Introduction

e Let’s consider a massless scalar field @ . The two point
function is given by
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e | et’s consider interactions. This are computed using the
In-In formalism
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Introduction

e Let’s consider a massless scalar field ¢ . The two point
function is given by

() = S (14 K/ (o Ho)) > 7

to
* Let’s include a cubic interaction ' = _¢3 \l/

to 9¢3
(6 (to)) = —i / A6 (to), Ham(y))

e At late times this leads to

H3 (k3 + k5 + k3)
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Introduction

* Interaction does not decay after horizon exit

(Pky (to) Py (to) Prs (T0))'
— i (t0) b (F0) s (F0) / dta(t)* %, (DL, (D6, (1) + cc

e This problem implies that now loops get a time
dependence

to
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IR divergences

* This arise due to interactions not decaying after horizon
exit.

e For example, interactions with two derivatives are IR safe

» Different types of IR divergences

* Time integrals

e Momentum integrals

2 2
\ g6* ZS 7252}12 log(k/aoHo)" log(kL)



IR divergences and inflation

* The existence of IR divergences imply that perturbation
theory breaks down at late times.

* |R divergences do not appear in single field inflation due
to the non-linearly realised shift symmetry.

e Curvature field is constant on superhorizon scales
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Light spectator fields
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e Superhorizon growth of all correlation functions
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e |f the field has a mass the superhorizon growth will eventually

stop
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IR divergences

IR Divergences are ubiquitous in dS spaces, but do not
appear on single-field inflation.

They appear also with massive fields (Eg. Three point
function with conformally coupled fields)

The history is different for other fields coupled to inflation

Two different origins. At tree-level only ‘time’ IR secular
divergences log (—k’no)

It is possible to regularise them using boundary counterterms
(very similar to renormalised perturbation theory in AdS/CFT)
SC, Davis and Melville 2020



Stochastic inflation



Fluctuations during inflation

* Fluctuations grow until they become
super horizon

 Once there they freeze

* New perturbations keep leaving the
horizon

Superhorizons perturbations can be thought of as classical
perturbations being seeded by quantum short wavelength
perturbations



Stochastic inflation

 Dynamics of long wavelength perturbations as brownian
motion
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 Short modes act as random Gaussian noise encoding
short distance effects.



Fokker-Planck equation

* Langevin equation can be written as a Fokker-Planck equation

d 1 8 , H3 82
Ep(gb’ t) = 3_H8_¢(V (@) P(o,t)) + 872 §p?

P(¢,t)

* Solving the associated Fokker-Planck equation we find that,

. 87T2V(gb)
tlggo P(¢) ~ exp (_ 34 )
Ay * Probability for the field
Eg V(o) = ﬂb depends on the classical
2, potential.
P(gb) ~ €XP (—@)\gb )

* Highly non linear and goes
beyond perturbation theory



Loops from FP equation

e We can solve the Fokker-Planck equation {(¢") = / dpd" P(9)
pertubatively

H? \NH? N2 H?
(%) = ) log a g (log a)” 1 53306 (loga)® + O(X\*(loga)’
* First term is the variance A(t) = ea(t)H
uv
) ) H2 H2
o = <¢Z(X = O) > — y ﬁ — 4—7_‘_210g(ALIR) .
IR
Lig = a(t:)H

Starobinsky ’83,
Starobinsky and Yokoyama ‘92



Loops from FP equation

* We can solve the Fokker-Planck equation

pertubatively
H? AH? A2 H?
2\ __ | 3 5 3 7
(Pp°) = e log a Yo (loga)” + 53306 (loga)” + O(A°(log a)

e Second correspond to loop correction to the two point function

5 A H? k 5
<¢ >1—100p — ~ Tﬂﬁlog(k/af]) log —H<CLHL>

a

* Time dependence also comes from the loop IR divergence

Tsamis and Woodard ‘05
Tokuda and Tanaka ’19
Baumagart and Sundrum ‘19



Perturbation theory vs
stochastic inflation

* Perturbation theory contains IR divergences associated to
the fact that perturbations keep entering the horizon

e Perturbation theory breaks down for A(loga)® > 1

e The common lore is that stochastic inflation sums all
loops rendering finite results

e At |late times there is an equilibrium solution

Ay H?
_ 2
V(¢) o 4 ¢ <¢ > ™~ )\1 /2 Starobinsky and Yokoyama 1994
Baumgart and Sundrum 2019

. . . . . . . Gorbenk adSsS t 2019
e Equilibrium solution is de Sitter invariant o o eD



 \We would like to understand better how to go from perturbation
theory to the stochastic theory

 This can be phrased as “what does the stochastic theory
computes”

 Might look like the semiclassical regime but we would like to
understand this better

Fokker-Planck Equation Cosmological bootstrap
2
P =V
(9P_8(V¢P>+H3 (82P> ‘ |
ot  0¢ \3H 8m2 \ O¢2 < 4
’ " ? U[¢] = exp [Z ﬁ/ Vo (K1y ooy ki) Pk, - ¢kn]
stochastic effects n=2 " JKieokn
non-perturbative * related to correlators
- equilibrium from re sum y perturbative

secular growth

Burgess et al ’09, ’10, '14
Gorbenko and Senatore 19
SC, Davis and Wang 23



Wavefunction method



Semiclassical approximation

* When dealing with a quantum system, when we expect the
nature of the system to be well approximated by the classical
trajectory

[o()] = / DP exp (—%sm) ~ exp (—%So@d])

P(no)=¢
b(—00)=0

S[®] = So[®u] + 1S, [Pe] + . ..

* The semiclassical action can be non linear and the approximation
can go beyond perturbation theory

e Qur goal: In which sense are is stochastic inflation related to the
semiclassical approximation.




Wavefunction method

Let’s consider scalar field Zhi /] [¢] — HW [¢]

on de Sitter evolving At
through the Schrodinger

eguation
Asymptotic future

n=1n 4+ ®(no) = ¢o

voe) — [ Doexp(—1sie))

P(no)=¢
b(—o0)=0

P(—o0 +1i€) =0

1= —00

Bunch-Davies vacuum

We expand the action S[®] = Sy[Pa] + hS1[Pa] + ...



Wavefunction method

Given a classical W[¢(¥)] = / D exp (—%S[@]) ~ exXp <——S[<I>Cl]>
solution g h
®(no) =¢
P(—00)=0
bulk-to-boundary
1 05; | 1 f 0.Siy
2 It -~ i - ! / J21nt
—m)P = — (I)ct](”sk) = KK (l",) n / dry G(k;n, 7 ‘
( ) \/__g (s(b h / ( \, } )(S(I)k(ﬁ') d=d,
bulk-to-
bulk
Path integral (D _ mQ)KSO (X7 t) =0, with th—glo K(X7 t) =1, t—)—})ior?l—l—ie) Ki(X, t) =0
Boundary
conditions

(O —-m*)G(z,2") = L(5(75 —1)6®(x — %) with lim G(z,z') = lim G(z,z2')=0

—g t,t/——oo(141ie) t,t’—to



Wavefunction method

* The semiclassical action generates only tree-level
wavefunction coefficients

1

Vo) = exp

(S() [(I)cl] + hSy [(I)cl + ... ])

1 1 1
Soltva] = 57 [ a0t [ ettt [ it dn

ki, kg

g st s "
\Ij[§bcl]NeXp(\/+ W+v \/+\/‘\/+ )




Wavefunction coefficients

P2 V3
Vel ~exp (T N[N N s )
ik K
— o4O
¢2 H277() H2 + (770)
i i(kT + ks + k3 1
0y =~ — i ) (ka4 ko) + ) — ks + )
0
— Tagga (k1 ks + K3) (8 + 6y — 3im +log((kn + ka2 + ks )no)) + O(1o)

 Exchange diagrams are in general very cumbersome

e All IR divergent terms except the last one are phases



1-loop wavefunction

* Loop corrections are generated by quantum terms and are
proportional to higher powers of

1

W[p()] ~ exp ( !

(So[Pe1] + AS1[Pa1] + - >

1-1 1—1 1—1
w2 oop ¢3 oop ¢4 oop

 Quantum corrections are generated by the functional determinant
as in the usual Wilsonian EFT , 629
Sl [(I)Cl] = 1T 10g P

o D2

S D —ig2/dna(n)4/dn’a(n’)4/k G(k,n,n")G(k +qa|,n,7)®(k,n)®(k, 1)
7q



Correlation functions

* The wave function is not an observable by itself but we can
aetine Plox] ~ |9[¢]

* The correct prescription is defined using the In-In formalism

e Correlation functions are computed
using the Born rule

2 e
[ D6 6, p, |¥loml R —
(b g ) = B —
s /% W[, ol T el 0
. o _ L H®
Eg. (%) = JRefin) ~ 283




Correlation functions

* Then we have ;4 v _QRGL, ol
2
. Rewé(k17k27k3)
4Ret (k1) Reh(ka) Revsh(ks)

;. Rewé(k17k27k37k4) . /
(DK, Py Py Py) = ST, Redd (k) (DK, Py Pres Piea ) g 5

<¢k1 ¢k2 ¢k3 >/ —

 Eg. 3-point correlation

H? (ky + ks + k3)

(—2/3 + YE + 10g(k1 + ko + kg)no)
12 Bk

<¢k1 ¢k2 ¢k3 >/ ™~

e Phases do not contribute to the correlation function

* Correlation function has a secular divergence



Loops from wavefunctions

* Different wave functions coefficients gets mixed up when
computing correlation functions

* Loop corrections contains term from the classical and the
quantum effective action

* EgQ. V = g®’/3!

YAV EA VSV v

2 2
Y 2 g
~ 23 log(kL)log(—2kng)* ~ — oE

log(kL) log(—2kno)? ~ 573 log(_anO)Q




Loops In correlators

: 3
From Wavefunction to Correlators: One-Loop example for g<I>

1-—1
) oop ¢4
I Jou(—2k 5
{>
2k3 og(—2kno) = 5 I8 ‘,log,(hL) log(—2k1j0)”
R(",',l loop 1 RG"/),(I( k. - )
(e Cbk;)i 1 _ kiks / €Y (K1, K2, P, — P
POTERTIOOR T ORe vy (ki) Revh (k) ~ 8Re! 5(k1) Res (k) Revs(p) Classical
N 1 / {Revgukl,p, —p — k;)Re?i(ky, —p,p+ k1)  loops
8Revg (k1) Reyn(ka) Jp Redh(p)Rets(|p + ki)

RB?«’s(kl ka, —k; — ko)Rev’ (kg + ko, p, —p)
Revh(p)Rev (k1 + ka|)

|

9 1 ool Lo 2
¢3 X ¢3 = 35 3.2 5 log(kL) log(—2kng)

30



Wavefunction is IR safe

e Classical contributions have a IR loop divergence

e What we saw is a consequence of a more "
general result: there are no IR loop K (k,) K (k. )
divergences in wave function coefficients e
- TIooP [ dips ... dea(m) a9 ) K (e m ) IS (B o) o
| /pl G oy 1) Gl ey )G+ g e ). K (k1) K (k, 1)
o i .. _ g g
})1141(1) G(p,n.n) = _6”2(”’.; +1"%) + O(p) G(k,n,n')

* The highest IR divergence terms are in the
semiclassical wavefunction

SC, Davis, Wang (23)

\Il[qb(f)] ~ exp (—%(SO [(I)cl] + hS; [(I)cl] + .. )

Gorbenko and Senatore 2019



Power counting argument

* Jo compare to the stochastic formalism let us take a
look at the long wavelength correlation functions.

A(t) = ea(t)H 7

uv
0% = (di(x = 0)2) = / ) log(AL) \

< ORe(k)  An?
IR
Lig = a(t:)H

(¢7) = ﬁloga(t) # (p*) = 12 loga — T = (loga)® + oy (loga) 4+ O(AX°(loga)




Semiclassical limit

 We have seen that the semiclassical wavefunction grows
larger than all quantum corrections

~

* We can understand this as defining the coupling X = \(loga)?
U ~ exp (zg + 2§1 + O(a2)>

e Inthelimit A = 0, loga — oo, A\ — const. the semiclassical
action dominates and we can neglect quantum corrections

<¢2>f;10ga(1 L, <1oga>1+<9(x3>)

362 1672



Beyond perturbation theory



Beyond perturbation
theory

* \We can remove the short wavelength modes directly from the
partition function and consider a simpler object

Prlo, t] = eWole|+Wr|4)]

Wy = /kRe 2 (B)Q (k) drd—c \

Wr; = Z / 2Re 'QD ...,kn,t) ¢k1 . ¢kn A (1—|—(55A k
ki

e This is the semiclassical limit of

Ploi] = /quz 0 <¢z —/ (;i];g ka) U ()|




Beyond perturbation
theory

* \We can remove the short wavelength modes directly from the
partition function and consider a simpler object

Prlo, t] = eWole|+Wr|4)]

N
W — /k Re o (K)Q25 (F) ded—ic | \
WI Z /k 2Re w k17° . n7 )¢k1 §b k,, /\I (1I+ 5);\ k
+ The time derivative is - Palp, ] = < Palé, ] + A-2 Pao, 1]
e time aerivative Is It AP, L] — o AP, AN AP,



Fokker-Planck from the
wave function

* The partial derivative is given by the Hamiltonian unitary evolution

OP[p, X, t]
ot

5
0¢(7)

— [H,P] - / d*r—"— (I,P[p, x. 1))

* Can be written as a field derivative over the long wavelength
momentum

0
5¢l (X)

y 0
5@5[ (X)

aPA 1 . /
ooN d3 d3 // 1k (x—x >Q L
5 3 xd’x ke A(k)

I, (x, t) Py = — / d3 (cbl(x, t)PA)

V'(®)
3H

* |[n general thistermis nonlinear ¢ =~



Polchinski RG equation

* In QFT one can study the effect of removing high energy
modes directly from the regulated generating functional

—1
Za = [ Dpe gt nmsin

* Moving the cutt-off doesn’t affect observable thus,

d
A—7) =
ap2a =0
 This implies an equation for the interactions
d A 1 d%k  dQa 52
A— —Sint — & —Sint
dAe 2/(27‘(‘)ddh’lA k5gpk5g0_k6



Polchinski RG equation

e |f we rewrite it as,

d 1 [ d%  dSy 5 ° 525
A— A _ B I 11N
dASmt 2 / (27T)d dlnAGk (<5¢ks t) 5g0k5g0_k

dn 9r+1 9n—r+1 9n+2

* Flow equation for integrating out high energy degrees of
freedom



Polchinsky equation for
correlators

* In the case of cosmology we have to taken into account the different contour

o Attree level we can use thatfor  Py[¢,t] = eVol#l+Wild]

o [ DoPAlo.] -

* This implies a Polchinsky RG type equation.
w, de'’? 1 / dfly 1 o° W, B Zi w, 0e’T
© dlogA 4 ). dlog ARety |\ 06100 k- Son \© S0 x

e Extra boundary terms, allows matching with correlation functions




Fokker-Planck equation

 The Polchinski equation can be rewritten as

Py

d_ o 1/ 1 dQ, 62
din A"~ 4 ), Retby dIn A 51661

e Joining both terms we recover the Fokker-Planck

equation
.0 B H3 82PA
{ Aa—APA[¢7t] — Q772 a¢2

%R\[% t] = 2 (ITAPr) = J (V¢ PA)

d

0 . 0
- PAlo, 1] = = Pa[.t] + AT Palo. 1]

Y 9

e Fokker-Planck equation is a summation of (semi classical)
terms



Fokker-Planck equation

* Joining both terms we recover the usual

Fokker-Planck equation

d
%PA[gbv t] —

0

Starobinsky ’83,

0

(

Ve Py | + H° 0° P, Starobinsky and Yokoyama ‘92
3H 812 0>

* We can check by solving in perturbation theory

H*? NH?

2
— 2 loga—
(07) = g loga— T

(loga)® +

A2 H?

53300 (loga)® + O(X*(loga)”

SC, Davis, Wang 2023

Matches with classical loops

* Higher order quantum corrections are subleading and not
considered in this equation. See however

Gorbenko and Senatore ’19
Mirbabayi "20
Green and Cohen 21



Quantum corrections

* In order to go beyond the semiclassical wavefunction we
need to to compute the 2Pl effective action

* The effect of the long modes acts as a mass for the short
modes dressing the propagators

-0+ 5061 6 (@) = id(a.) + O

* This changes the diffusion term

pitt = 1 ((1+ 2 tog2 - v(3/2)6*) P(0)) |

Gorbenko and Senatore '19
Mirbabayi '20
Green and Cohen 21
SC and Colas (In progress)



Conclussions

We have showed how to recover the Fokker-Planck equation from
the wavefunction of the universe approach

The relation between the semiclassical action and the stochastic
theory becomes manifest

The resumption of IR divergent terms is achieved through a
Fokker-Planck equation

This approach is non perturbative and can help to compute the
whole PDF for a given EFT

Many directions to follow (compute corrections, phenomenological
implications)



In-In formalism

e This method is equivalent to the usual in-in formalism.

e Defining the partition function

¢ ¢
ZULJﬂ:i/LWk/QED¢1 PP eiSI®1]-iS(@2] i [ S1—i [ T2
BD BD

e Solving the e.0.m with sources

Al / Doy exp (— / SO+ i / / 0t (T (LK (1K) — Jo(t, K K™ (1,K))
1 / / / * / /
_§L/ﬁﬁhmmmmq¢mum—b@mG@abbuko

e This leads to

211, J2) = exp <_% /k [ e (D6 L) T(E) = DA L) Tal) + T (DA (K t,t’).]g(t’)]>



General loop results

[T

<O >L~l()op ~

= L

 L—loc |
Re Un oop (10\\’01'-01‘(101' lo op "‘,4"--")
+ |' [
P1;---,P Re ’U-’Q...RC (Y

(Revo)™ )5, ..

_+_/ (exchange 1)) n n / (contact Re 13)Y
pp, Re ¥2...Re 1o Jorope  (Retp)BV+n/2

.....

x \ log(k.Lm)L log(—kno) v

in agreement with Baumgart, Sundrum 2019
IR-divergent correlators are always dominated by Classical loops

Semi-
classical
effect

Superhorizon

IR divergence ohysics
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