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A Cosmological collider program
[Chen, Wang, 0911.3380; Arkani-Hamed, Maldacena, 1503.08043 and many more]
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mass ~ 10’4 GeV amplitude nonanalyticity



Signal Size f{3*

A Cosmological collider program
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[Lian-Tao Wang, ZX, 1910.12876]
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Over the years, many particle models identified
in SM/BSM, with large signals

Many types of diagrams (tree + loop) involved

Understanding the amplitudes!
= efficient numerical implementation
= analytical structure
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Massive inflation correlators
[See Chen, Wang, ZX, 1703.10166 for a review]

T({k}) ~ /dT/ d%q x (—7)P x P x Hi;[— K(q, k)T} X 0(1; — 75)
vertex int loop int ext line bulk line

» Massless / conformal external lines + (principal) massive internal lines
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» Challenges:

* Mode functions (Hankel, Whittacker, ...) 0q
 Loop momentum integrals Oq+ky Oq—k4
* Nested time integrals Oatks

« Complexity increases with # of loops and # of vertices



Massive inflation correlators: Tree level

“Cosmological bootstrap”

Diff eqs and solutions for single exchange [Arkani-Hamed, Baumann, Lee, Pimentel, 1811.00024]
Single exchange in closed form for 3pt [ain, zX, 2301.07047]

Diff egs and solutions for double exchange [Aoki, Pinol, Sano, Yamaguchi, Zhu, 2404.09547]

Cosmological polytopes and kinematic flow: “Conformal scalar amplitudes”
Energy integrand [Arkani-Hamed, Benincasa, Postnikov, 1709.02813]
Diff eqs for any number of exchanges [Arkani-Hamed et al., 2312.05303]

Partial Mellin-Barnes + Family tree decomposition [Qin, zx, 2205.01692, 2208.13790]
Conformal amplitudes: full analytical results [Fan, zx, 2403.07050]
Massive: any exchanges reduced to a mechanical procedure [zx, Zang, 2309.10849]

Numerical package also available: CosmoFlow [werth, Pinol, Renaux-Petel, 2302.00655]

Massive exchanges essentially solved, but not optimally (too many layers of summation)
Can we find better results? Can we directly get the result without doing any computation?



Partial Mellin-Barnes + family tree decomposition
[Qin, ZX, 2205.01692, 2208.13790]

Partial Mellin-Barnes rep: MB rep for all bulk lines; Special functions => powers
For example: Massive scalar propagator [Hankel function]
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Time and momentum factorized

All time and momentum integrals factorized; We can deal with them separately:

T ({k}) ~ / ds x G(s) X [ / dqu(q,k)a] X [ / dre’f™ x (—7)P x 8(r; —Tj)]

bulk lines loop int nested time int
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Left poles Right poles



Partial Mellin-Barnes + family tree decomposition

T ({k}) ~ /ds X G(s) X [/dqu(q,k)a] X [/dfreiET x (—=7)° x 0(7; —Tj)]

bulk lines loop int nested time int
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The most general time integral: ~ (—i)V / 11 [dn (—Tg)qf‘lei“’m] []o(; — )

R =1

It naturally acquires a graphic representation [NOT original Feynman diagrams]:
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Family tree decomposition

[ZX, Zang, 2309.10849]
Family tree decomposition:

We flip the directions such that all nested graphs are partially ordered

O(m1 —72) +0(r2 — 1) = 1 e 3 v e S ek 5
Partial order:
mother daughter
A mother can have any number of daughters . - .
T1 T2

but a daughter must have only one mother
Every resulting nested graph can be interpreted as a maternal family tree

sisters

A useful notation for family trees: [1\%(34 ‘5o )(5 s 5 )]

mother-daughter



Computing the family tree

The family tree has a one-line series expansion, in terms of 1/E .,
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earliest site sum of all g’s on Site j and her descendants (gi2...

=g t+a+)

Mellin integrands typically meromorphic [only poles] s

Final results by residue theorem: pole collecting

Pole structure encodes rich physics!

A massive tree with / internal lines reduced to a series of

3/-fold summation [2/ from PMB, I from family tree]



« Simpler family trees sum to named hypergeometric functions:
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« More complicated family trees not yet named, but the many different ways of expanding them
provide a convenient tool for numerical evaluation and analytical continuation
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A byproduct: conformal-scalar amplitudes in FRW
[Fan, ZX, 2403.07050]

A nice toy model: conformal scalar with non-conformal self-interactions
S = [ a*¥12y=g| 5 @ube)? + 5 eRaE+ ) ey £ = (d—1)/(4d)

Rule for conformal amplitudes: 1. Fix a partial order; 2. Write the uncut tree; 3. Cut!

Example: 4-site star: Full analytical expressions in terms of family tress in two lines

"Np4-star — Z abC{ [41a2b3c(11a)(2§b)(33c)] + (:4ia2b3c (2§b)(3§c): [1 + 2 perms)

a;b,c=+

+ ([42535] [11] [22] + 2 perms) + [dpae] [12] [22] [35] }

Compared with kinematic flow: 64 coupled diff egs!
Actually, much easier to derive diff egs from family trees [He, Jiang, Liu, Yang, Zhang, 2407.17715]
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Arbitrary massive tree: differential equations
[Liu, ZX, to appear]

A massive graph is fully specified by:
a vertex energy E and a twist p for each vertex, a line energy K and a mass v for each line

G{E}, {K}) = Z / H dma —7;)P laE“]HDg’;‘;?K To, T.)

av:|:

| = # lines, V = # vertices. In tree diagrams, V =1/ + 1. 2/ independent kinematic variables
A A

: — 1a; Byt i
In particular, external leges are irrelevant: | | Ca.(kn; 7:)(—7:)" = (H #)f R G R

K1 25 \>
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Arbitrary massive tree: differential equations

* An internal line (bulk propagator) is collapsed to 0 or 6 by a Klein-Gordon operator
« The KG operator can be pulled out of the integral with IBP at a given vertex

« We obtain a 2nd order diff eq for the graph by picking up a line + one of its two endpoint

Dk, e.9 = Cal9]

DKa/Ei ~

* There are a total of 2/ choices => 2/ diff eqs for 2/ indep energy ratios. A complete set!
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Arbitrary massive tree: differential equations

* An example of 3-vertex chain:

b g, P2 g, P3 g, P2 g, P3 pi2t4 g, P3
e )

Dk, /8 ( o——o——=0 e——e—@ | = e——
Ey Vi Ey V2 E3 1 Vi Ey V2 3 FEq9 V3 Es
n g, P2 K, D3 n g, P2 kg, D3 P g, b2st4

Dk, /5, ( o—— o2 ¢ )z Dk, /s ( o—— o2 ¢ ) = eo— 9
E, Vi FEy V2 Ej 1 Y1 By V2 Eag F4 4! FEo3

2

(ﬁKl + %)2 + 77 — Ez (p1 +5+ ﬁKl) (p1 +4+ ﬂKl)] 51£§p3(E17 Es, Es; K1, K>)
2
9k, + 2)" + 72 — I; (p2 + 8 + Uk, +9xk,) (P2 + 7+ Vk, + 19K2)] PIP203 (), By, F3; K1, K»)

__ (p12+4)p .
= 3212 3(E12,E3,K2)

ﬁKa = Ka(‘?Ka
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Solving the massive-tree differential equations
Eventually, solutions in multivariate hypergeometric functions
=> The best we can hope: series solutions in regions of interest (i.e., the physical region)

An arbitrary tree graph can be reduced to a single point by recursively removing its leaves
=> Conversely: recursively constructing a tree by adding leaves to a single point

Assuming we know a V-site graph (series sol) => construct (V+1)-site graph (series sol)
Solving the diff eq for a leaf: 2nd order ODE with a source; hom sol + inhom sol

Homogeneous solutions ~ factorized time integral (“easy”)
inhomogeneous solutions ~ nested time integral (“hard”)

Strategy: o K -
E;
tackling the hardest part first (completely inhom sol) lasf

The easy part obtained by taking cuts
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Inhomogeneous recursion formulae

Assuming we know the series solution for a V-vertex tree:

c _§ q1 gN
gV p— C{n}’r’l o.-’r'N X o o o

{n} Di

We can solve the diff eq of the “new leaf”
to get the nested part of the (V+1)-vertex tree:

- > T; 2m+3 T £4+q1...n+pj+1
Gva] = X Ydmin (5) ()
in ~ 7“9
£,m=0 {n}
2(-1)%(q1...n + Dij + 5)e42m

l ; e
e'( i 2N+Pa + % A %)

d@m{n} —

{n}

m—+1
The energy order is important; Define an energy flow (from large to small) & time flow

The above solution is for an “ingoing line” ( E; > E; ). “Outgoing solution™ also obtainable
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Completely inhomogeneous solution: massive family trees

Applying the inhomogeneous recursion formulae for any tree graph, we find a compact one-
line (or two-line) formula for the completely inhomgeneous solution

CIS [év] = Z 2V cos(mp1..v /2)T(q1 + p1 + 1)

{¢,m}
ﬁ (—1)£i K; \2mi+3 / F; £i+p;+1
X — — .
litqi+p; 5 iv, ( ) ( )
i B (P 4+ £ ) 40 2B Ei

The solution is expanded in the reciprocal of the largest vertex energy (E,), and is indep of
orders of other energies

Picking up a largest energy automatically generates a partial order: massive family tree
g: a “family parameter” encoding the tree structure: ¢; = ¢; + 2m; + p; + 4N;

Graph ¢ solution; WYSIWYG: CIS [év] = [[iQ---V]]
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Homogeneous solutions: cuts of massive family trees

The homogeneous solutions are obtained by executing appropriate cuts:
(;(ut [?V] — [[T---z'ﬁ---Vl]]{[[(Vl+1)---jﬂ---V]] + [[(1/1+1)...jb...v]]}+ c.C.

The cut involves certains dressings of massive family trees: augmentation and flattening:

| 00 Ka 2m+iva+3/2 .
[oedt] = 2_:0 A””(2E) [oi T amimsss

. B N K, \ 2m—i7a+3/2 .
[ ] = Z:O ;m( - ) [i T o imsss

The cut is directional:
Subgraph with the largest energy augmented only; the other both augmented and flattened
Consistent with the cosmological collider signal cutting rule

Multiple cuts similarly defined; Summing over all cuts (including no cut) give the final answer
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Massive tree: a summary

A differential equation system and its solution obtained for arbitrary massive exchanges
Diff Eqs: A coupled Lauricella system
Solutions: A massive family tree plus all its cuts

Nice correspondence with Cosmo Collider pheno:
Massive family tree => Background

Symmetric part of the cut ( ## + c.c. ) => Nonlocal signal
Directional part of the cut ( #b + c.c.) => Local signal

The series for a V-vertex graph involves a 2(V-1)-fold summation:
match the # of indep variables => Optimal in the sense of transcendentality (?)
[In comparison: 3(V-1)-fold from PMB + family tree]

Finally, we can write down the analytical answer for arbitrary massive tree graph in inflation
without doing any computation, like amplitudes in flat space!
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Massive cosmological correlators: Loop level

» Spectral decomposition: first complete result for 1-loop bubble diagram [zx, zhang, 2211.03810]

« Partial PM: Factorization theorems, cutting rule, & analytical result for leading nonlocal
signals at arbitrary loops order [Qin, X, 2304.13295; 2308.14802]

p3(D-1) - Z Cilv; — %(D -1)| o . . P\ 2icv,
=1 H {I‘[% + ColVy, —celue] (7) }

(5D—3)/2
(4) 3D+ Y ciy; =1

Il
ﬂ
i

Me,...cp (P)

 Diff egs for loop integrands; loop integrals remain challenging [He, Jiang, Liu, Yang, Zhang, 2407.17715,

Baumann, Goodhew, Lee, 2410.17994]

* A new boostrap combining spectral decomposition and dispersion techniques, with result
neatly organized as a sum over quasi-normal modes, and free of UV divergence
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Spectral decomposition

» dS isometries => the bubble function as linear superposition of principal massive propagators

Z By(L) X

EdS bubble function

2
The spectral density obtainable by D5 (z,y) Explicitly computable by known
Wick-rotating dS to sphere or AdS results of Y'’s

» Wick rotating back to dS, a spetral function obtained in arbitrary dimensions, dim reg
automatic [Marolf, Morrison, 1006.0035] [See also Loparco, Penedones, Vaziri, Sun, 2306.00090]

. o= 3—d d _ :
S35 = 1 cos(m (3 11/)]F e o —iv
(47)(@+1)/2  gin(—7iv) d_jp
e~ 33— i —iv - o e~ —2iv+d/2 d/2
2 d +11/ iV, 3 d/2—;~1u 11/, 22d, 22d — v, 2-d d -I—ll/l iv'—2iv+d/2 v'+d/
A+ —iD, 1+ i,

X 7F6 1—d/2+iv' —iv

2

1]

2
.~ 4+11/ —3d/2 4+iv'—2iv— 3d/2
1—-iv R 5

+ (¥ — —7).
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1-loop trispectrum and bispectrum

* 1-Loop bubble = a spectral integral of tree: finish the integral by collecting correct residues

=~

= /dgli.,oﬁ(g')

The spectral function has simple residues (Gamma products) corresponding to the weights of
quasi-normal mode. Especially transparent in the factorized part (the signal):

e 2 e
a ) 32420 X (14+n)1|{(1+iv+n)| (14 2iv+n)s N

m? cos(2miv) £ (14 2iv + 2n),
2+iv+n,2+iv+n 2+iv+n,2+iv+n
x oF i 2| o F x 2 ™ 4 c.c.
2 1[ 5 4 92iF + 2n T1]2 1[ 5 4 915 + 2n T2](T1”) Tieie

The nested part can then be computed by a dispersion method
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Dispersion relations for massive correlators

[Liu, Qin, ZX, 2407.12299]

 Dispersion integral: relating the value of a function with the integral along its branch cut

P

OB

f(’r)—/ dr’ f(r') _/+°° dr’ Disc, f(r')
Je 2miv—r  J . 2m  r -7

-
N

! " The potential divergence of the large circle
can be easily removed by a “subtraction”

* The disc. is often much easier to calculate than the full answer [factorization; cutting rule;
optical theorem] [Melville, Pajer, 2103.09832; Goodhew, Jazayeri, Lee, Pajer, 2104.06587]

( \
_ dr’ 1 o r’ y r
2mir' —r
\ /
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Dispersion relations for massive correlators
[Liu, Qin, ZX, 2407.12299]

» Two types of dispersion relations: complex vertex and line energies
[See also Werth, 2409.02072, for a dispersion relation of massive trees on the complex mass plane]

* In vertex dispersion, the Disc totally from the signal (nonlocal + local)
In line dispersion, the Disc from the nonlocal signal alone

A A
Vertex energy o ks
Signal disc Nonlocal signal disc
—ksa —ks kls —kiz —Fksa k’?4 kl12
d)c(kl) * _X ! ¢ > ‘ SR v 1 1 >
TE Pole PE Pole 1 physical region PE Pole 1 PE Pole 2 | physical region
¢C(k2)
Line energy Vertex energy plane Line energy plane
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Finish the dispersion integral by going to the Mellin plane => Pole collecting

1/
<

4 =3 2

+ivt

e 1
S

U = 2]*C?)/k123

o (k3) 5 p(ks3)

» The result expressed as a sum over quasi-normal mode
contributions; signal + background

F0-2() = Cu ul i (B+4iv +4n)(1+n)1(1+ 2w +n):
1287 sin(27riv) (2 +i0+n)1(2 +iv+n):
n=0 2 2\ 2 2

1,2,4

dor 24 2iv+2n,4 + 2iv + 2n
21 1 —2n — 2i0,4 + 2n + 2iv

2n4-2iv
4+ 4i7 + 4n “]“ 35[

+ vV — —7p)

)
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Massive loop: a summary

No UV divergence ever shows up in the calculation
[UV properties encoded in the divergences in the large circle; removed by the subtraction, at
the expense of generating new local terms of unknown coefficients: renormalization!]

Lesson: UV divergence and regularization is largely an artefact of the ordinary Feynman-
diagram computation procedure, and can be totally avoided in a dispersive calculation

On the other hand, renormalization is physical and cannot be determined by the calculation
alone: The computation can determine a UV sensitive 1-loop graph only up to additive tree
graphs; the unknown coefficients of these tree graphs should be determined by
renormalization conditions

The divergence-free calculation makes the dispersive method a potentially useful tool for
numerical computation
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Final thoughts

Unlike flat-space amplitudes such as Parke-Taylor, massive inflation correlators are not the
sort of “hundred pages of midsteps collapsed to a one-line formula” thing

They belong to a GKZ hypergeometrical system, carrying their own transcendental weights
Whatever method we take, we have to reach that transcendentality

Then, what does analytical computation mean other than identifying these hypergeometrics?

GKZ might be too general; desirable to develop new and more specialized techniques for
understanding massive inflationary correlators

[Analyticity] Series expansions around all possible singularities can be very powerful in
understanding the analytical structure and phenomenology of these object

[Numerical & pheno] A complementarity between analytical and numerical methods:
Typically, squeezed limit easy / hard for analytical / numerical; equilateral limit otherwise

Thank you!
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