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The LHCb detector in Run 3

￼5

[The LHCb upgrade I]

5× increase in 
instantaneous luminosity.

Huge signal-production 
rates, at the MHz scale!

https://cds.cern.ch/record/2859353
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The Run 3 trigger framework

￼7

New fully-software-based trigger, based on GPU + CPU.

[LHCb-TDR-016]
[LHCb-TDR-018]

https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf
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The Run 3 trigger framework

￼8

New fully-software-based trigger, based on GPU + CPU.

Partial event reconstruction + 
selections.
Based on Allen: GPU-based 
trigger software framework.
[CSBS 4, 7 (2020)]
[LHCb-TDR-021]

[LHCb-TDR-016]
[LHCb-TDR-018]

https://arxiv.org/abs/1912.09161
https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf
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New fully-software-based trigger, based on GPU + CPU.

Partial event reconstruction + 
selections.
Based on Allen: GPU-based 
trigger software framework.
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Offline-quality, full 
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Sprucing: offline 
processing+filtering, 
can be re-done 
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The Run 3 trigger framework

￼11

New fully-software-based trigger, based on GPU + CPU.

Partial event reconstruction + 
selections.
Based on Allen: GPU-based 
trigger software framework.
[CSBS 4, 7 (2020)]
[LHCb-TDR-021]

Offline-quality, full 
event reconstruction 
+ selections.

[LHCb-TDR-016]
[LHCb-TDR-018]

Sprucing: offline 
processing+filtering, 
can be re-done 
(non-destructive).

Novel opportunities to improve and expand the physics program.
Excellent setup for ML solutions.

https://arxiv.org/abs/1912.09161
https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/2319756/files/LHCB-TDR-018.pdf
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What next?

￼12

[LHCC-2018-027]
[LHCB-TDR-023]

Further increase in 
instantaneous 
luminosity for 
Upgrade II.

Bigger challenges!
Potential next step: 
GPUs also in HLT2.

https://cds.cern.ch/record/2636441?ln=en
https://cds.cern.ch/record/2776420?ln=en
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Big challenges

￼13

Trigger

Simulation

Data Quality 
Monitoring

The constraints of the trigger impose high throughput 
for HLT1 and HLT2 and low bandwidth to disk storage.

Complementary lines of action:
• Speed up reconstruction algorithms.
• Improve the data-volume reduction.

➥ Optimise event selection (trigger lines).
➥ Optimise event filtering (selective persistency)
 [JINST 14 (2019) 04, P04006].

Bandwidth     Trigger output rate × Event size∝

https://inspirehep.net/literature/1723258
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Big challenges

￼14

More beam data requires more simulated data.
 - Simulation took ~90% of the CPU resources in Run 2.
 - Very strong need for (ultra) fast simulations.

Trigger

Data Quality 
Monitoring

Simulation

(See details in this talk.)

https://indico.cern.ch/event/1377881/contributions/5861134/attachments/2827655/4941437/GCorti-%20R&D-Simulation-20240327.pdf
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Big challenges

￼15

Trigger

Simulation

Identifying detector anomalies promptly and ensuring 
the data is safe for physics analysis is always important.

Data Quality Monitoring (DQM) in detector 
commissioning times:
• Challenging: frequent changes in the setup.
• Crucial: effective identification and communication of 

problems impacts the commissioning schedule.

Currently, the task is done by rotating shifters, hence 
very demanding in terms of person power.
Huge gains could come from automation.

Data Quality 
Monitoring
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Lipschitz networks

￼19

The algorithms to be used for filtering in the trigger need to be very fast and 
avoid introducing complicated effects in the signal selection efficiencies.

LHCb has being using ML algorithms based on decision trees in trigger 
selections for many years [arXiv:1510.00572].

Monotonic Lipschitz neural networks
[arXiv:2112.00038]

Impose desired constraints in the behaviour of the network by construction:
Robustness against detector instabilities and simulation inaccuracies.

➥ Technically done via weight-normalisation scheme during training.
Monotonicity in certain features for out-of-distribution guarantees.

➥ Technically done by adding a residual connection to the network.

https://arxiv.org/abs/1510.00572
https://arxiv.org/abs/2112.00038
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Lipschitz networks: inclusive trigger selections

￼20

[arXiv:2312.14265]

Two- and three-body topological triggers in HLT2, aimed at identifying 
beauty secondary vertices. → Monotonicity imposed in the IP 𝝌2 and the pT.

Enhanced sensitivity to long-lived candidates, particularly 
useful for searches of feebly-interacting particles.

https://arxiv.org/abs/2312.14265
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Lipschitz networks: other applications

￼21

This type of network is 
now also used for 
electron ID at the 
HLT1 level, 
implemented in Allen.

[LHCB-FIGURE-2024-003]

Next: the Lipschitz networks are also being investigated in tracking and ghost 
(fake-track) rejection algorithms.

Large improvement 
with respect to the 

conventional (not ML 
based) algorithm.

https://cds.cern.ch/record/2897528
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ML model serving in the trigger

￼22

As more and more neural networks permeate HLT1 and HLT2, maintaining 
hard/hand-coded implementations becomes increasingly challenging.
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ML model serving in the trigger

￼23

As more and more neural networks permeate HLT1 and HLT2, maintaining 
hard/hand-coded implementations becomes increasingly challenging.

[LHCB-FIGURE-2023-006]

Study of flexible ML model 
serving backends, such as 
TensorRT for HLT1 and 
ONNXRuntime for HLT2
(see details in this talk).

https://cds.cern.ch/record/2859117
https://indico.cern.ch/event/1276878/contributions/5375618/attachments/2639408/4567256/chep2023_lhcb_gpu_tensorrt_inference_mvanveghel.pptx.pdf
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ML model serving in the trigger

￼24

As more and more neural networks permeate HLT1 and HLT2, maintaining 
hard/hand-coded implementations becomes increasingly challenging.

[LHCB-FIGURE-2023-006]

Study of flexible ML model 
serving backends, such as 
TensorRT for HLT1 and 
ONNXRuntime for HLT2
(see details in this talk).

Efforts ongoing towards developing flexible and standardised pipelines for 
ML model serving, as well as for ML model training, that facilitate the long-
term maintenance.

https://cds.cern.ch/record/2859117
https://indico.cern.ch/event/1276878/contributions/5375618/attachments/2639408/4567256/chep2023_lhcb_gpu_tensorrt_inference_mvanveghel.pptx.pdf
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Types of simulation at LHCb

￼26

Multiple complementary techniques to speed up the simulation process.
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Types of simulation at LHCb

￼27

E.g. shower simulation with GANs 
(see details in this poster).
➥ Detector simulation speed up 
factor 20x.

Multiple complementary techniques to speed up the simulation process.

https://indico.cern.ch/event/1330797/contributions/5796650/
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Types of simulation at LHCb

￼28

LAMARR, ultra-fast simulation using ML-based parametrizations [arXiv:2309.13213].
➥ Detector simulation speed up factor of 2 orders of magnitude.

Multiple complementary techniques to speed up the simulation process.

https://arxiv.org/abs/2303.11428
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LAMARR

￼29

Pipeline of modules parameterising both the 
detector response and the reconstruction 
algorithms of the LHCb experiment.

➥ Output high-level quantities directly, 
including uncertainties on reconstructed 
quantities.

[arXiv:2309.13213]

https://arxiv.org/abs/2303.11428
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LAMARR: status and next steps

￼30

[arXiv:2309.13213]

First validation studies show excellent performance.

LAMARR is built within the LHCb simulation framework.
➥ Next: integration in the production system.

https://arxiv.org/abs/2303.11428
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From LHCb-specific to experiment-independent

￼31

Gaussino is the new core simulation 
framework extracted from the LHCb 
simulation framework [https://
gaussino.docs.cern.ch/].

https://gaussino.docs.cern.ch/
https://gaussino.docs.cern.ch/
https://gaussino.docs.cern.ch/
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From LHCb-specific to experiment-independent

￼32

Gaussino is the new core simulation 
framework extracted from the LHCb 
simulation framework [https://
gaussino.docs.cern.ch/].

• Ongoing integration of LAMARR 
in Gaussino, via SQLamarr (repo, 
docs) and PyLamarr (repo).

In addition, general ML model 
serving interface implemented in 
Gaussino, including pyTorch C++ 
API and ONNXRuntime (see details 
in this poster and this talk).

https://gaussino.docs.cern.ch/
https://gaussino.docs.cern.ch/
https://gaussino.docs.cern.ch/
https://github.com/LamarrSim/SQLamarr
https://lamarrsim.github.io/SQLamarr/
https://github.com/LamarrSim/PyLamarr
https://indico.cern.ch/event/1330797/contributions/5796650/
https://events.ncbj.gov.pl/event/314/contributions/1558/
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From LHCb-specific to experiment-independent

￼33

Gaussino is the new core simulation 
framework extracted from the LHCb 
simulation framework [https://
gaussino.docs.cern.ch/].

• Ongoing integration of LAMARR 
in Gaussino, via SQLamarr (repo, 
docs) and PyLamarr (repo).

In addition, general ML model 
serving interface implemented in 
Gaussino, including pyTorch C++ 
API and ONNXRuntime (see details 
in this poster and this talk).

This could be the basis for a more 
general ML serving interface for 
Gaudi.

https://gaussino.docs.cern.ch/
https://gaussino.docs.cern.ch/
https://gaussino.docs.cern.ch/
https://github.com/LamarrSim/SQLamarr
https://lamarrsim.github.io/SQLamarr/
https://github.com/LamarrSim/PyLamarr
https://indico.cern.ch/event/1330797/contributions/5796650/
https://events.ncbj.gov.pl/event/314/contributions/1558/
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Track finding in LHCb

￼35
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Track finding in LHCb

￼36

The usage of Graph Neural Networks 
(GNNs) can offer near-linear inference 
with # hits [Eur. Phys. J. C 81, 876 (2021)].

➥ High parallelisation potential thanks 
to the GPU-based trigger.

Conventional algorithms for track finding often scale quadratically (or worse) 
with the number of hits.

https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
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The ETX4VELO project

￼37

[arXiv:2406.12869]

Based on the Exa.TrkX approach [Eur. Phys. J. C 81, 876 (2021)], originally 
tailored for 4π tracking detectors in a magnetic field, akin to ATLAS and CMS.

Goal: reconstruct forward tracks without a magnetic field, accounting for hit 
overlaps and inefficiencies.
➥ ETX4VELO introduces new triplet-related stages compared to the Exa.TrkX 
approach, to handle tracks with shared hits.

https://arxiv.org/abs/2406.12869
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8
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The model

￼38

Hit graph construction: 
DNN that embeds each 
hit into a latent space + 
k-Nearest Neighbours.

[arXiv:2406.12869]

https://arxiv.org/abs/2406.12869
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The model

￼39

Edge classification: GNN.

[arXiv:2406.12869]

https://arxiv.org/abs/2406.12869
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The model

￼40

Formation of triplets 
(edge-edge 
connections).

[arXiv:2406.12869]

https://arxiv.org/abs/2406.12869
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The model

￼41

Triplet 
classification: 
extension to the 
previous GNN 
with a DNN per 
triplet.

[arXiv:2406.12869]

https://arxiv.org/abs/2406.12869
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The model

￼42

Track construction

[arXiv:2406.12869]

https://arxiv.org/abs/2406.12869
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Results

￼43

Next: optimise the throughput for usage in HLT1.
➥ Batching over events in the GPU recently achieved.

Compared to the default algorithm in LHCb:
• Similar efficiency.
• Improved reconstruction for electrons.
• Lower ghost (fake-track) rate.

[arXiv:2406.12869]

https://arxiv.org/abs/2406.12869
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PV finding with a hybrid model

￼45

Collaborative effort between people in LHCb and ATLAS.
LHCb uses a hybrid model, composed of DNN + Convolutional Neural Network (CNN).

[arXiv:2309.12417]

• Input:	tracks	in	the	event.

• Target:	Gaussian	distributions	
whose	heights	and	widths	reflect	
the	expected	PV	resolutions.

https://arxiv.org/abs/2309.12417
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PV finding with a hybrid model

￼46

Many iterations of design improvement 
aiming at increased performance.

• Modified algorithm, based on CNN.
• Comparison to the default AMVF algorithm:

➥ 2x better vertex resolution.
➥ Similar efficiency and false positive rates.

Studies towards speeding up the 
inference, for application in HLT1.

[arXiv:2309.12417]

In ATLAS [ATL-PHYS-PUB-2023-011]
Next: 

implementation in 
the Allen 

framework.

https://arxiv.org/abs/2309.12417
https://cds.cern.ch/record/2858348/
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PV finding with GNN

￼47

Alternative approach: GNN model based on the ETX4VELO one, tracks 
represented as nodes, same input features as the hybrid model, coordinates of 
associated PV as target for the nodes, custom loss (see details in this poster).

The GNN model 
achieves slightly 
better physics 

performance and 
offers a new 

complementary 
functionality:
track-to-PV 
association.

https://indico.nikhef.nl/event/4875/contributions/20317/attachments/8200/11960/PVFinder_EuCAIFCon24.pdf


R&D stage

In/close to 
production 

stage
Trigger Simulation

PV finding

Data Quality Monitoring

La
te

st
 M

L 
de

ve
lo

pm
en

ts

VELO tracking

Anomaly detection

Others

Neutral particle simulation

DFEI



Julián García Pardiñas (CERN) 10/07/2024ML for LHCb

Deep-learning based Full Event Interpretation (DFEI)

￼49

One-go inclusive multi-signal reconstruction + pileup suppression, targeting 
optimal event filtering.

➥Alternative to current approach: OR between HLT2/Sprucing lines + 
selective persistency of other associated objects in the event.

Type of decay-chain reconstruction similar to that of the FEI algorithm at Belle II 
[Comput.Softw.Big Sci. 3 (2019) 1 6], but targeting the harsher LHC environment.

[Comput Softw Big Sci 7, 12 (2023)]

https://arxiv.org/abs/1807.08680
https://link.springer.com/article/10.1007/s41781-023-00107-8
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The algorithm

￼50

First prototype:

• Based on three 
sequential GNN 
modules.

• Restricted to b-hadron 
decays and charged 
stable particles.

• Only considers target 
ancestors which are 
“topologically” 
reconstructible(*).

• Trained on custom 
simplified simulation 
in Run3-like 
conditions.

[LCA:	Lowest	
Common	
Ancestor]

(*) Target ancestors discarded if they are very short lived or don’t have enough charged descendants to form a vertex.

[Comput Softw Big Sci 7, 12 (2023)]

https://link.springer.com/article/10.1007/s41781-023-00107-8
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Performance: single-decay reconstruction

￼51

[Comput Softw Big Sci 7, 12 (2023)]

https://link.springer.com/article/10.1007/s41781-023-00107-8
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Performance: multi-decay reconstruction

￼52

[Comput Softw Big Sci 7, 12 (2023)]

Fraction of perfectly-reconstructed events in inclusive b-hadron simulation 
(example below) in the ballpark of the tag-side efficiency for Belle (II) 
[Comput.Softw.Big Sci. 3 (2019) 1 6].

https://link.springer.com/article/10.1007/s41781-023-00107-8
https://arxiv.org/abs/1807.08680
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Performance: event filtering (pileup suppression)

￼53

[Comput Softw Big Sci 7, 12 (2023)]

Powerful event-filtering irrespectively of the particle multiplicity, 
as found in inclusive b-hadron simulation.

https://link.springer.com/article/10.1007/s41781-023-00107-8
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Recent improvements to model inference

￼54

First prototype:
• Quadratic scaling of the inference time with the particle multiplicity, 

dominated by the node-pruning GNN module.
• Overall evaluation time on the order of few seconds per event on CPU.
• Inference pipeline on python with TensorFlow.
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Recent improvements to model inference

￼55

First prototype:
• Quadratic scaling of the inference time with the particle multiplicity, 

dominated by the node-pruning GNN module.
• Overall evaluation time on the order of few seconds per event on CPU.
• Inference pipeline on python with TensorFlow.

Modifications to the model (see details in this talk):
 - Model simplification: substitution of the GNNs used for node- and edge-
pruning by simpler classifiers (BDT).
 - Implementation of the full inference pipeline in C++, with the LCAI GNN 
module converted thanks to the recent additions in TMVA::SOFIE.

https://indico.cern.ch/event/1330797/contributions/5796657/attachments/2818149/4920485/ACAT_2024_FL_v5.pdf
https://indico.jlab.org/event/459/contributions/11746/attachments/9716/14215/TMVA_SOFIE_%20CHEP23.pdf
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Recent improvements to model inference

￼56

First prototype:
• Quadratic scaling of the inference time with the particle multiplicity, 

dominated by the node-pruning GNN module.
• Overall evaluation time on the order of few seconds per event on CPU.
• Inference pipeline on python with TensorFlow.

Modifications to the model (see details in this talk):
 - Model simplification: substitution of the GNNs used for node- and edge-
pruning by simpler classifiers (BDT).
 - Implementation of the full inference pipeline in C++, with the LCAI GNN 
module converted thanks to the recent additions in TMVA::SOFIE.

Sub-linear scaling 
achieved. Time now 

dominated by the LCAI 
algorithm. Significant 

overall speed up
(final number pending on 
a hyper-parameter tuning 

of the LCAI).

(See details in this talk.)

https://indico.cern.ch/event/1330797/contributions/5796657/attachments/2818149/4920485/ACAT_2024_FL_v5.pdf
https://indico.jlab.org/event/459/contributions/11746/attachments/9716/14215/TMVA_SOFIE_%20CHEP23.pdf
https://indico.cern.ch/event/1330797/contributions/5796657/attachments/2818149/4920485/ACAT_2024_FL_v5.pdf
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Present and future of the DFEI project

￼57

Ongoing developments:
• Studies for applications in data analysis.
• Expansions (include neutral stable particles, charm hadrons, …).
• Design improvements to the GNN model.

Next:
• Implementation in the LHCb software stack: targeting Sprucing for the 

near future and HLT2 in the long term.
• Detailed performance studies with simulation and with data.
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Anomaly detection in the muon system

￼59

Goal: inclusive trigger line 
to search for signatures of 
Long Lived Particles (LLPs).

Idea: use the muon detector 
as a sampling calorimeter.
• Very clean environment.
• Information of hit 

coordinates and 
multiplicities available.
➥ No energy-deposit 

measurements.

Similar searches done by ATLAS [PRD 106 (2022) 3, 032005] and CMS [PRL 
127 (2021) 26, 261804, arXiv:2402.18658].

[LHCb Upgrade I]

[LHCb-FIGURE-2024-015]

https://arxiv.org/pdf/2203.00587
https://arxiv.org/pdf/2107.04838
https://arxiv.org/pdf/2107.04838
https://arxiv.org/abs/2402.18658
https://arxiv.org/pdf/2305.10515
https://cds.cern.ch/record/2899695/files/LHCb-FIGURE-2024-015.pdf?version=1
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Normalised autoencoders (NAE)

￼60

Autoencoders (AEs) are trained to 
minimise the difference between the 
input and the reconstructed output.

Application in anomaly detection:
• Train on normal (non-anomalous) 

data only.
• Evaluate on all data: expect low reconstruction error for normal data and large 

error for anomalous data.

[arXiv:2105.05735]

https://arxiv.org/abs/2105.05735
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Normalised autoencoders (NAE)

￼61

Autoencoders (AEs) are trained to 
minimise the difference between the 
input and the reconstructed output.

Application in anomaly detection:
• Train on normal (non-anomalous) 

data only.
• Evaluate on all data: expect low reconstruction error for normal data and large 

error for anomalous data.

Possible drawback of standard AE: the model can generalise “too well” and 
also reconstruct anomalous data, preventing the discrimination.

NAE: add a normalisation term to the loss function, estimated via MC sampling.
➥ Good reconstruction if, and only if, data is normal.

[arXiv:2105.05735]

https://arxiv.org/abs/2105.05735
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NAE for anomaly detection in the muon system

￼62

[LHCb-FIGURE-2024-015]

Studies: train the model on simulated minimum-bias events; evaluate the 
reconstruction error for those types of events and for specific simulated signals.

Axion sample as signal in the plot:

Good separation found.

Important: for the eventual application, 
the model can be trained on real data.

https://cds.cern.ch/record/2899695/files/LHCb-FIGURE-2024-015.pdf?version=1
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Performance study

￼63

[LHCb-FIGURE-2024-015]

Comparison with other models in terms of number of parameters and signal 
efficiencies for different LLPs, for a 99.99% background rejection power:

https://cds.cern.ch/record/2899695/files/LHCb-FIGURE-2024-015.pdf?version=1
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Performance study

￼64

[LHCb-FIGURE-2024-015]

Comparison with other models in terms of number of parameters and signal 
efficiencies for different LLPs, for a 99.99% background rejection power:

NAEs found to give a significantly better performance 
than the other considered models.

Next: implement the algorithm in Allen.

https://cds.cern.ch/record/2899695/files/LHCb-FIGURE-2024-015.pdf?version=1
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Neutral particles in LAMARR

￼66

To extend the LAMARR simulation to photons and electrons, an accurate 
simulation of the high-level ECAL response is required.
Technical challenge:

(due to bremsstrahlung radiation, converted photons, and merged π0)
number of generated particles ≠ number of reconstructed objects

(Studies covered in this talk.)

https://indico.cern.ch/event/1413344/contributions/5939507/attachments/2869587/5023659/lamarr_hsf-det-sim-wg_mbarbetti.pdf
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Neutral particles in LAMARR

￼67

To extend the LAMARR simulation to photons and electrons, an accurate 
simulation of the high-level ECAL response is required.
Technical challenge:

Two complementary approaches:
• Signal photons (produced in decay modes under study): one-to-one relation 

possible. → Similar treatment as for charged particles.
• Secondary photons: event-level description inspired by translation problems.

(due to bremsstrahlung radiation, converted photons, and merged π0)
number of generated particles ≠ number of reconstructed objects

(Studies covered in this talk.)

https://indico.cern.ch/event/1413344/contributions/5939507/attachments/2869587/5023659/lamarr_hsf-det-sim-wg_mbarbetti.pdf
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Treatment of secondary photons

￼68

Next: further work to improve and compare the performance of both algorithms.

Two types of algorithms under study: Transformers (see below a generation 
example) and GNNs.

➥ Models trained in an adversarial way, with DeepSets as discriminators.

(Studies covered in this talk.)

https://indico.cern.ch/event/1413344/contributions/5939507/attachments/2869587/5023659/lamarr_hsf-det-sim-wg_mbarbetti.pdf
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DQM system

￼70

DQM goal: disentangle pp collision datasets in good conditions (OK) from those 
presenting detector-induced anomalies (BAD).

Two regimes:

• Online: datasets collected at 
fixed time intervals (10’ in 
LHCb). Shifters inspect the 
data continuously, aiming to 
identify anomalies as soon 
as possible to get them 
fixed.

• Offline: datasets correspond to full runs, that have been previously 
collected. Shifters inspect the data with much looser time limitations, 
aiming at a very accurate classification.
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DQM system

￼71

Currently, the task is performed by rotating shifters:

• Limited classification accuracy.

• High cost in terms of person power.

• Challenging adaptation to changes in operational conditions, which 
requires frequent update of histogram references by detector experts.
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Reinforcement Learning from Human Feedback (RLHF)

￼72

RL: a ML “agent” interacts with the environment, performing actions and 
receiving rewards for them. The agent is trained to behave in a way that 
maximises the reward expected to be received in the long term.

RLHF: the rewards are derived from human decisions.

RL techniques are used at CERN for example for accelerator control (see 
e.g. this recent talk).

https://indico.nikhef.nl/event/4875/contributions/21155/attachments/8317/11882/EuCAIF_vkain_May24.pdf
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RLHF for DQM

￼73

Proof-of-concept studies in [arXiv:2405.15508], presented in the following.
➥ First application of RLHF for DQM at HEP experiments.
➥ The approach is experiment independent.

https://arxiv.org/abs/2405.15508
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RLHF for DQM

￼74

Proof-of-concept studies in [arXiv:2405.15508], presented in the following.
➥ First application of RLHF for DQM at HEP experiments.
➥ The approach is experiment independent.

Capture trends by training continuously during data taking.
Allow the possibility to globally optimise multiple correlated tasks, partially 
involving human actors.
➥ Balance data collection efficiency vs operational costs.

Why RL?

https://arxiv.org/abs/2405.15508
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RLHF for DQM

￼75

Proof-of-concept studies in [arXiv:2405.15508], presented in the following.
➥ First application of RLHF for DQM at HEP experiments.
➥ The approach is experiment independent.

Capture trends by training continuously during data taking.
Allow the possibility to globally optimise multiple correlated tasks, partially 
involving human actors.
➥ Balance data collection efficiency vs operational costs.

Why RL?

Foreseeable challenges?
Training/evaluation time? Not a technical limitation at the current level of 
knowledge.
Data scarcity? Approach: data-augmentation techniques.
Degradation of algorithm’s response by absorbing human mistakes? 
Approach: produce evolving reference templates that experts can check.

https://arxiv.org/abs/2405.15508
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Proof-of-concept (POC) studies

￼76

[arXiv:2405.15508]

Synthetic data: 1D histograms generated in Nominal or Anomalous conditions, 
ordered sequentially. Distributions can change at a certain point in time.

RL algorithm: PPO actor-critic [arXiv:1707.06347].

https://arxiv.org/abs/2405.15508
https://arxiv.org/abs/1707.06347
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Proof-of-concept (POC) studies

￼77

[arXiv:2405.15508]

Synthetic data: 1D histograms generated in Nominal or Anomalous conditions, 
ordered sequentially. Distributions can change at a certain point in time.

RL algorithm: PPO actor-critic [arXiv:1707.06347].

RL environment for Offline regime:
• Goal: maximise accuracy.
• One RL agent, that classifies a histogram as good or bad.
• Trained with labels from the shifter, available for every histogram.

https://arxiv.org/abs/2405.15508
https://arxiv.org/abs/1707.06347
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Proof-of-concept (POC) studies

￼78

[arXiv:2405.15508]

Synthetic data: 1D histograms generated in Nominal or Anomalous conditions, 
ordered sequentially. Distributions can change at a certain point in time.

RL algorithm: PPO actor-critic [arXiv:1707.06347].

RL environment for Offline regime:
• Goal: maximise accuracy.
• One RL agent, that classifies a histogram as good or bad.
• Trained with labels from the shifter, available for every histogram.

RL environment for Online regime:
• Goal: balance classification accuracy with the need for human intervention.
• Two RL agents, one that classifies and one that calls the shifter when needed.
• Additionally, concept of problem fixing introduced in the dataset generation.

https://arxiv.org/abs/2405.15508
https://arxiv.org/abs/1707.06347
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Studies in the Offline regime: accuracy improvement

￼79

[arXiv:2405.15508]

Target label shaped in 30% of the cases during training, to emulate human 
mistakes.

(This is a typical behaviour in 
neural networks, that happens 
only if the noise distribution is flat 
in the phase space.)

The algorithm learns how to filter 
away this noise and achieve a 

higher accuracy than the 
shifter.

The conclusion still holds if shifters can see the outcome of the algorithm 
before making their decision and get partially influenced by it (see backup).

https://arxiv.org/abs/2405.15508
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Studies in the Offline regime: data augmentation (DA)

￼80

[arXiv:2405.15508]

Insert artificial data points, generated using evolving references for nominal 
histograms and predefined (generic) types of anomalies.

Change in type of anomalies Change in nominal conditions
DA improves generalisation DA speeds up adaptation

https://arxiv.org/abs/2405.15508
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Studies in the Online regime: accuracy vs workload

￼81

[arXiv:2405.15508]

Change in nominal conditions

The algorithm achieves 
a high accuracy with a 

limited number of 
calls to the shifter, 

which are focused on 
the most relevant 

moments.

https://arxiv.org/abs/2405.15508
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Conclusion of the POC studies

￼82

[arXiv:2405.15508]

Promising results from the proof-of-concept studies for both 
the Online and Offline regimes, in terms of accuracy and 

level of automation.

Next: do studies on LHCb data.

Since the approach is experiment independent, it could be 
applied to other experiments (some people in CMS and 

ALICE already manifested potential interest).

https://arxiv.org/abs/2405.15508
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Other ML developments

￼84

Inclusive Flavour Tagging with DeepSets
[arXiv:2404.14145]

Approach: consider all tracks in the event instead of subsets of them.
• Improved physics performance over classical taggers.
• Very fast training and inference.

https://arxiv.org/abs/2404.14145
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Other ML developments

￼85

Inclusive Flavour Tagging with DeepSets
[arXiv:2404.14145]

Approach: consider all tracks in the event instead of subsets of them.
• Improved physics performance over classical taggers.
• Very fast training and inference.

Robust Neural Networks for particle identification
[arXiv:2212.07274]

Goal: reduce biases due to the specific decay samples used for training.
Approach: disentangle common and decay-specific components in the input.
• Improved physics performance compared to conventional algorithms.

https://arxiv.org/abs/2404.14145
https://arxiv.org/abs/2212.07274


Opportunities & challenges in Run 3 and beyond

Latest ML developments

Take-home messages
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Take-home messages

￼87

★ LHCb is currently in an optimal spot for the development, 
deployment and usage of ML techniques: new software & 
hardware opportunities + big-data challenges.
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Take-home messages

￼88

★ LHCb is currently in an optimal spot for the development, 
deployment and usage of ML techniques: new software & 
hardware opportunities + big-data challenges.

★ Increasing focus on long-term maintainability of ML 
solutions and development of common pipelines.
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Take-home messages

￼89

★ LHCb is currently in an optimal spot for the development, 
deployment and usage of ML techniques: new software & 
hardware opportunities + big-data challenges.

★ Increasing focus on long-term maintainability of ML 
solutions and development of common pipelines.

★ At the same time, many ongoing R&D efforts for the present 
and future of the experiment, that make use of state-of-the-
art algorithms and in several cases constitute pioneering 
applications at the LHC experiments.



Backup slides
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GNN model for ETX4VELO project

￼91

[arXiv:2406.12869]

https://arxiv.org/abs/2406.12869
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Offline DQM: environment

￼92

	-	The	histograms	are	fully	independent	from	each	other.

	-	Fixed	probability	to	generate	BAD	histograms.

	-	Time	dependency	only	through	type	of	generation	distributions.


Episodes	made	out	of	a	single	step.


One	single	agent	(neural	network).


One	decision:	label	as	OK	or	BAD.


	-	The	“shifter”	provides	(target)	OK/BAD	labels	for	every	histogram.

	-	Reward:	+1(-1)	if	correctly	(incorrectly)	classified.

States

Actions

Episodes/steps

Agents

Rewards

[arXiv:2405.15508]

https://arxiv.org/abs/2405.15508
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Online DQM: environment

￼93

	-	The	histograms	depend	on	each	other	(concept	of	“problem	fixing”).
States

➥	If	the	current	histogram	is	BAD,	the	
next	one	will	also	be	BAD,	unless	the	
algorithm	labels	it	as	BAD.

➥	If	the	current	histogram	is	OK,	or	if	
the	algorithm	has	labelled	it	as	BAD,	
the	next	histogram	will	be	BAD	with	a	
fixed	probability	(as	in	the	offline	case).

[arXiv:2405.15508]

https://arxiv.org/abs/2405.15508
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Online DQM: environment

￼94

	-	The	histograms	depend	on	each	other	(concept	of	“problem	fixing”).

	-	Target	labels	OK/BAD	only	available	when	the	shifter	looks	at	the	
data,	that	happens	in	two	cases.

States

➥	If	requested	by	the	
algorithm.


➥	Randomly,	with	a	fixed	
probability	
(“checkpoint”).

[arXiv:2405.15508]

https://arxiv.org/abs/2405.15508
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Online DQM: environment

￼95

	-	The	histograms	depend	on	each	other	(concept	of	“problem	fixing”).

	-	Target	labels	OK/BAD	only	available	when	the	shifter	looks	at	the	
data,	that	happens	in	two	cases.


Episodes	made	out	of	a	variable	number	of	steps,	separated	by	two	
consecutive	“checkpoints”.


	-	Two	agents,	one	to	classify	(predictor)	and	one	to	call	the	shifter	
(checker),	acting	one	after	the	other.

	-	The	checker	can	see	the	output	of	the	predictor.


One	decision	per	agent:	label	as	OK	or	BAD;	call	or	not	the	shifter.


Separate	reward	per	agent:

	-	Predictor:	same	reward	as	in	the	Offline	case,	but	only	when	the	
shifter	labels	are	available.

	-	Checker:	reward	derived	from	the	predictor’s	“confidence”	on	its	
decision,	mildly	penalising	unnecessary	calls	(see	next	slide).

States

Actions

Episodes/steps

Agents

Rewards

[arXiv:2405.15508]

https://arxiv.org/abs/2405.15508
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Reward schemes for the Online-DQM agents

￼96

[arXiv:2405.15508]

https://arxiv.org/abs/2405.15508
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Offline DQM: human-machine interaction

￼97

Let’s	assume	the	same	situation	as	before,	but	now	the	shifter	can	see	the	algorithm’s	
prediction	before	making	the	decision	and	get	(partially)	influenced	by	it.


➥	Does	this	prevent	the	algorithm	from	reaching	“superhuman”	performance?

We	consider	the	following	setup:


1. The	shifter	can	see	a	proxy	probability	
for	the	algorithm	to	be	correct	(in	this	
case	computed	from	its	output	logits).


2. The	shifter	randomly	“trusts”	the	
algorithm	in	a	fraction	of	cases	that	has	
a	dependency	on	that	probability.


3. When	the	shifter	trusts	the	algorithm,	
their	decision	is	replaced	by	the	one	of	
the	algorithm.


4. The	algorithm	is	trained	using	those	a-
posteriori	shifter	decisions.

[arXiv:2405.15508]

https://arxiv.org/abs/2405.15508
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Offline DQM: human-machine interaction

￼98

Let’s	assume	the	same	situation	as	before,	but	now	the	shifter	can	see	the	algorithm’s	
prediction	before	making	the	decision	and	get	(partially)	influenced	by	it.


➥	Does	this	prevent	the	algorithm	from	reaching	“superhuman”	performance?

We	consider	the	following	setup:


1. The	shifter	can	see	a	proxy	probability	
for	the	algorithm	to	be	correct	(in	this	
case	computed	from	its	output	logits).


2. The	shifter	randomly	“trusts”	the	
algorithm	in	a	fraction	of	cases	that	has	
a	dependency	on	that	probability.


3. When	the	shifter	trusts	the	algorithm,	
their	decision	is	replaced	by	the	one	of	
the	algorithm.


4. The	algorithm	is	trained	using	those	a-
posteriori	shifter	decisions.

Both	the	algorithm	and	the	shifter	
perform	better	than	the	baseline	case.

[arXiv:2405.15508]

https://arxiv.org/abs/2405.15508

