

Quad Module – MALTA2 V1

Marcos Vázquez Núñez

Carlos Solans Sánchez

Introduction

(a) IC0 Master; IC1 Slave

CHIP 0 - MASTER

CHIP 1 - Slave

CHIP 2 - Slave

CHIP 3 - Slave

FMC Connector - HPC

CERN

Power connectors & decoupling capacitors

Reset & chip ID

Reset signals

Voltage dividers were implemented to reduce the voltage from 2.5V to 1.8 V.

2.5V → comes from FPGA 1.8V → goes to the chip

> Solder jumpers were implemented like switches (easier to solder and unsolder) to choose in between '1' and '0'

Chip ID has two bits, because four chips will be implemented (3 slaves

- + 1 master chips).
 - "00" → CHIP 3 (slave)

 - "10" \rightarrow CHIP 1 (slave)
 - "11" \rightarrow CHIP 0 (master)

Chip ID (Chip 3 in this picture)

(CERN)

3D view – Front side

- Minimal distance required from bonding lab to do wirebonding in between MALTA2 chips is at least 800 microns
- Distance in between chips will be 900 μm for this first version

PCB details

- MALTA2 quad module PCB V1 will have the following dimensions:
 - 111 mm x 36.5 mm x 0.4 mm
- Material for high-speed signals: I-Tera MT40
 - <u>https://www.isola-group.com/pcb-laminates-prepreg/i-tera-mt40/</u>
- Thickness: ~ 400 µm for 4 layers in stack-up
 - Advantage against MALTA QUAD module (12 layers used). Minimal thickness can be 1.3 1.5 mm
 - Minimal thickness of MALTA2 QUAD module has been divided by 3 compared to MALTA QUAD, thus less dead material in the PCB.
- FMC pinout was changed for PCB routing optimisation
 - HPC FMC connector used. Module cannot be tested with LPC connector, due to both banks of the connector are used (A and B).
- 460 CHF/unit

CERN

Manufacturer stack-up

Stack-up

- Total thickness will be ~ 400 μ m in this version (398 μ m)
 - Soldermask thick \rightarrow 25 µm
 - Top and bottom copper layers → 12 µm
 - Core → 100 µm (I-Terra MT40 material)
 - Prepreg \rightarrow 70 µm (1067H of I-Tera MT40 material)
 - Metallisation drilled layer \rightarrow 25 25 = 50 µm

#	Name	Material	Туре	Weight	Thickness	Dk	Df
	Top Overlay		Overlay				
	Top Solder	Solder Resist 🕮	Solder Mask		0.025mm	3.5	0
	Top Layer		Signal	1/2oz	0.012mm		
	Dielectric 1	0	Prepreg		0.07mm	3.08	0.002
2	GND		Plane	1oz	0.017mm		
	Dielectric 11		Core		0.1mm	3.26	0.0025
3	Internal layer		Signal	1oz	0.017mm		
	Dielectric 2		Prepreg		0.07mm	3.08	0.002
4	Bottom Layer		Signal	1/2oz	0.012mm		
	Bottom Solder	Solder Resist 🔤	Solder Mask		0.025mm	3.5	0
	Bottom Overlay		Overlay				

Altium stack-up

Mechanical studies of the detector disk for FMT

• Regarding the dimensions provided, our mechanicals engineers were simulating a disk with 3 different modules layers (pink, blue and green) to cover the dead material as efficiently as possible.

Hadron endcap FMT geometry (config 2)

Parameter	Disk 1	Disk 2
Inner Radius	7.014 cm	7.014 cm
Outer Radius	23.095 cm	23.095 cm
z location	145 cm	165 cm
Material budget	0.74%X/X ₀	0.74%X/X ₀
Average hit efficiency	98%	98%

Mechanical studies of the detector disk for FMT

 Regarding the dimensions provided, our mechanicals engineers were simulating a disk with 2 different modules layers (pink) to cover the dead material as efficiently as possible.

Hadron endcap FMT geometry (config 2)

Parameter	Disk 1	Disk 2
Inner Radius	7.014 cm	7.014 cm
Outer Radius	23.095 cm	23.095 cm
z location	145 cm	165 cm
Material budget	0.74%X/X ₀	0.74%X/X ₀
Average hit efficiency	98%	98%

BACKUP 17/06/24

QUAD-Module update

1/7/24

15

Pull-up in POWER EN LEFT/RIGHT by default

Power_EN signal does not need to be connected, it is configurated in '1' by default, with OEN = DVDD = '1' and C_PADIN = '1' at the NAND input, CIN = '1' (output)

Pull-down resistor in DAC_VDD

 Every left and right DAC power (DAC_VDD) has a pull down resistor implemented in MALTA2 chip (AVDD_DAC_LEFT/RIGHT)

3D view-Back side

