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 Rectilinear cooling design is approaching a release version
 Thanks to Ruihu!
 Ruihu’s design now frozen → publication

 Performance is improved over MAP
 Ongoing discussion about cost/etc

 But still want higher efficiency
 Would like ~ factor 2 more muons from the production system
 Needed to make baseline parameters
 Luminosity goes with N2

 Transmission of all rectilinear cooling system designs is 
rather low

 Why?
 Can we do better?

DA and cooling optimisation



  

 Emittance change goes as

 Lcool is cooling length, characteristic of the channel
          is equilibrium emittance, characteristic of the channel
 Quick (cheap) cooling →           >>

Ionisation cooling



  

 We want           as large as possible
 The maximum emittance is determined by the acceptance 

of the cooling system
 Maximum emittance particle that makes it through the cooling 

cells
 Two classes of acceptance (aperture)

 Physical acceptance – equipment intercepts the beam
 Dynamical acceptance – aberrations in the focusing at large 

emittance cause particles to get lost

Acceptance



  

 Particles undergoing focusing follow elliptical trajectories in 
(position, momentum) space

 Beam pipe/aperture → maximum position transmitted
 Trajectories that touch the beam pipe are lost
 Maximum emittance trajectories that do not touch the 

beam pipe → “Acceptance”
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 Focusing of solenoids varies across the magnet face

Dynamical Acceptance

Geek3, CC BY-SA 3.0, via Wikimedia Commons
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field

Stronger
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 Variation is only in the fringe of the solenoid
 Variation → determined purely in terms of the field on axis



  

 Consider Maxwell’s equations

Dynamical Acceptance

 We can solve the PDE to get a generalised expression for B

 For a generalised solenoid symmetry



  

 Consider Maxwell’s equations (magnetostatic)

Dynamical Acceptance

 We can solve the PDE to get a generalised expression for B

 For a generalised solenoid symmetry



  

 Assume generalised Taylor series for the field

Dynamical Acceptance

 Substitute into Maxwell and solve

 Off-axis behaviour of solenoid is unique function of 
the field on-axis

 Particular coil arrangement is irrelevant for beam dynamics
 Of course it is important for many other reasons!



  

 Consider Dynamic Aperture of demo lattice
 Implementing “derivatives solenoid” into G4BL
 Use B = h0 sin(kz) + h1 sin(2kz) + h2 sin(3kz)

Example – Demo Lattice

2024-05-24-release
Solenoids only

Field expansion
h0 = 8.75 T
h1 = 1.25 T
Truncate at r9



  

 For a beam that follows a gaussian distribution…
 4D Amplitude follows a chi2 distribution with 4 degrees of 

freedom
 By comparing DA with emittance we can estimate number 

of muons outside acceptance
 Assuming gaussian beam
 (For ionisation cooling, expect a bit more tail than in a 

Gaussian)
 By comparing DA with equilibrium emittance, we can 

develop “figure of merit” for cooling lattice
 “Dynamic range” of a given cooling lattice

Nb Amplitude distribution



  

 Interesting features if we zoom out
 Acceptance even in the stop band
 Here I assume beta for 200 MeV/c (reference) trajectory to 

calculate amplitude

Demo – zoom out



  

Back to cooling...

Stratakis et al, PRAB 18 031003, 2015

Zhu et al, in progress

51.9 %

49.6 %

 So what about cooling?

Just
decays:
80 %



  

 A-type lattices
 Set H1 to 0 and adjust H0 so that integral Bz2 dz is constant

 Average focusing strength goes with integral Bz2 dz
 Field is approximately sine wave – stop band disappears

A-type Acceptance

beta

99th 
centile



  

 Can scale the momentum by scaling Bz

Momentum range

Cell length = 1.8 m; h0 = 4.0



  

 Can scale the momentum by scaling Bz

Momentum range

Cell length = 1.8 m; h0 = 5.0



  

 Can scale the momentum by scaling Bz

Momentum range

Cell length = 1.8 m; h0 = 6.0



  

 Can scale the beta function by scaling Bz and cell length
 Keep (cell length) * Bz constant

Beta scaling & acceptance



  

 Can scale the beta function by scaling Bz and cell length
 Keep (cell length) * Bz constant

Beta scaling & acceptance



  

 Can scale the beta function by scaling Bz and cell length
 Keep (cell length) * Bz constant

Beta scaling & acceptance



  

 We can generate any acceptance we like
 Dynamic range is conserved
 High acceptance is easier to generate than low acceptance
 Note also that dynamic range is better at high momentum

 So why do we have a bad transmission for A1+???

Acceptance



  

 Physical acceptance driven by RF cavity iris radius
 RF team advice: (iris radius) = 0.5*(ideal cavity radius)
 Define “iris factor” = (iris radius)/(ideal cavity radius)

Physical Acceptance



  

 Consider the beam used by Ruihu at A1
 Scan DA
 Transmission is high
 No dependence on DA

Dynamic Acceptance



  

 Consider the beam used by Ruihu at A1
 Add a single RF cavity @ 352 MHz (iris factor 0.5)
 Transmission is terrible

Physical Acceptance



  

 Higher radius → lower frequency (176 MHz)

RF frequency



  

Conclusions
 Physical acceptance is limiting performance of A-type 

lattices
 Improved physical acceptance → lower frequency
 Need to consider 176 MHz RF for A-type lattice

 We can generate a good dynamic range for the A-type 
lattices

 Should be possible to make a good cooling performance 
with decay-dominated transmission

 Addendum… can we capture into 176 MHz RF?
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