Rectilinear Cooling DA

DA and cooling optimisation

- Rectilinear cooling design is approaching a release version
 - Thanks to Ruihu!
 - Ruihu's design now frozen \rightarrow publication
- Performance is improved over MAP
 - Ongoing discussion about cost/etc
- But still want higher efficiency
 - Would like ~ factor 2 more muons from the production system
 - Needed to make baseline parameters
 - Luminosity goes with N²
- Transmission of all rectilinear cooling system designs is rather low
 - Why?
 - Can we do better?

Ionisation cooling

Emittance change goes as

$$\varepsilon_n(z) = \left[\varepsilon_n(0) - \varepsilon_n^{eqm}\right] exp\left(\frac{-z}{L_{cool}}\right) + \varepsilon_n^{eqm}$$

L_{cool} is cooling length, characteristic of the channel

- ε_n^{eqm} is equilibrium emittance, characteristic of the channel
- Quick (cheap) cooling $\rightarrow \varepsilon_n(0) >> \varepsilon_n^{eqm}$

Acceptance

- We want $\varepsilon_n(0)$ as large as possible
- The maximum emittance is determined by the acceptance of the cooling system
 - Maximum emittance particle that makes it through the cooling cells
- Two classes of acceptance (aperture)
 - Physical acceptance equipment intercepts the beam
 - Dynamical acceptance aberrations in the focusing at large emittance cause particles to get lost

Physical Acceptance

- Particles undergoing focusing follow elliptical trajectories in (position, momentum) space
- Beam pipe/aperture \rightarrow maximum position transmitted
- Trajectories that touch the beam pipe are lost
- Maximum emittance trajectories that do not touch the beam pipe → "Acceptance"

Focusing of solenoids varies across the magnet face

- Variation is only in the fringe of the solenoid
- Variation \rightarrow determined purely in terms of the field on axis

Consider Maxwell's equations

$$\nabla .B = 0$$
$$\nabla \times B = 0$$

For a generalised solenoid symmetry

$$\nabla .B = \frac{1}{r} \partial_r (rB_r) + \partial_z B_z$$
$$= \partial_r B_r + \frac{B_r}{r} + \partial_z B_z$$
$$\nabla \times B = (\partial_z B_r - \partial_r B_z)\hat{\phi} = 0$$

We can solve the PDE to get a generalised expression for B

Consider Maxwell's equations (magnetostatic)

 $\nabla .B = 0$ $\nabla \times B = 0$

For a generalised solenoid symmetry

$$\nabla .B = \frac{1}{r} \partial_r (rB_r) + \partial_z B_z$$
$$= \partial_r B_r + \frac{B_r}{r} + \partial_z B_z$$
$$\nabla \times B = (\partial_z B_r - \partial_r B_z)\hat{\phi} = 0$$

We can solve the PDE to get a generalised expression for B

Assume generalised Taylor series for the field

$$B_r = \sum_{i=0}^{i} a_i(z) r^i$$
$$B_z = \sum_{i=0}^{i} b_i(z) r^i$$

Substitute into Maxwell and solve

$$b_{i+2}(z) = -\frac{1}{(i+2)^2} \partial_z^2 b_i(z)$$
$$a_i = -\frac{1}{i+1} \partial_z b_{i-1}(z)$$

- Off-axis behaviour of solenoid is unique function of the field on-axis
 - Particular coil arrangement is irrelevant for beam dynamics
 - Of course it is important for many other reasons!

Example – Demo Lattice

MInternational UON Collider boration

- Consider Dynamic Aperture of demo lattice
 - Implementing "derivatives solenoid" into G4BL
 - Use B = h0 sin(kz) + h1 sin(2kz) + h2 sin(3kz)

2024-05-24-release Solenoids only

Field expansion h0 = 8.75 Th1 = 1.25 TTruncate at r⁹

Science & Technology Facilities Council

Nb Amplitude distribution

- For a beam that follows a gaussian distribution...
- 4D Amplitude follows a chi² distribution with 4 degrees of freedom
- By comparing DA with emittance we can estimate number of muons outside acceptance
 - Assuming gaussian beam
 - (For ionisation cooling, expect a bit more tail than in a Gaussian)
- By comparing DA with equilibrium emittance, we can develop "figure of merit" for cooling lattice
 - "Dynamic range" of a given cooling lattice

Demo – zoom out

- Interesting features if we zoom out
 - Acceptance even in the stop band
 - Here I assume beta for 200 MeV/c (reference) trajectory to calculate amplitude

So what about cooling?

Stratakis et al, PRAB 18 031003, 2015

Stage	$\varepsilon_T^{\rm sim}$ [mm]	$\varepsilon_L^{\rm sim}$ [mm]	$P_z^{\rm sim}$ [MeV	T/c] T [%]	
Begin	17.00	46.00	255		
A1	6.28	14.48	238	70.6	
A2	3.40	4.64	229	87.5	
A3	2.07	2.60	220	88.8	
A4	1.48	2.35	215	94.6	51.9 %
				Zhu et al, in progress	
	$\varepsilon_{T,sim}$ (mm)	$\varepsilon_{L,sim}$ (mm)	$\varepsilon_{6D,sim} (mm^3)$	Transmission	
Start	16.96	45.53	13500		Just
A-Stage 1	5.165	18.31	492.6	75.2%	decays
A-Stage 2	2.473	7.113	44.03	84.4%	80 %
A-Stage 3	1.556	3.880	9.594	85.6%	00 /0
A-Stage 4	1.239	1.741	2.861	91.3%	<mark>49.6 %</mark>

A-type Acceptance

A-type lattices

International N Collider

boration

- Average focusing strength goes with integral B_z² dz
- Field is approximately sine wave stop band disappears

Momentum range

Can scale the momentum by scaling B_z

Cell length = 1.8 m; h0 = 4.0

Can scale the momentum by scaling B_z

Cell length = 1.8 m; h0 = 5.0

Momentum range

Can scale the momentum by scaling B_z

Cell length = 1.8 m; h0 = 6.0

Beta scaling & acceptance

- Can scale the beta function by scaling B_z and cell length
 - Keep (cell length) * B_z constant

Beta scaling & acceptance

- Can scale the beta function by scaling B_z and cell length
 - Keep (cell length) * B_z constant

Beta scaling & acceptance

- Can scale the beta function by scaling B_z and cell length
 - Keep (cell length) * B_z constant

Acceptance

- We can generate *any* acceptance we like
- Dynamic range is conserved
- High acceptance is *easier* to generate than low acceptance
- Note also that dynamic range is better at high momentum
- So why do we have a bad transmission for A1+???

- Physical acceptance driven by RF cavity iris radius
- RF team advice: (iris radius) = 0.5*(ideal cavity radius)
- Define "iris factor" = (iris radius)/(ideal cavity radius)

UON Collider

- Consider the beam used by Ruihu at A1
- Scan DA
- Transmission is high
- No dependence on DA

*B*₀ 1.7308 [T]; N(rf) 0 ; Cell Length 5200 [mm]

*B*₀ 3.2143 [T]; N(rf) 0 ; Cell Length 2800 [mm]

Physical Acceptance

- Consider the beam used by Ruihu at A1
- Add a single RF cavity @ 352 MHz (iris factor 0.5)
- Transmission is terrible

RF frequency

• Higher radius \rightarrow lower frequency (176 MHz)

B₀ 3.2143 [T]; N(rf) 1 ; Cell Length 2800 [mm]

Conclusions

- Physical acceptance is limiting performance of A-type lattices
- Improved physical acceptance \rightarrow lower frequency
- Need to consider 176 MHz RF for A-type lattice
- We can generate a good dynamic range for the A-type lattices
 - Should be possible to make a good cooling performance with decay-dominated transmission
- Addendum... can we capture into 176 MHz RF?

