

Update on Rectilinear Cooling Lattice

Ruihu Zhu (瑞虎 朱)

Institute of Modern Physics, Chinese Academy of Sciences University of Chinese Academy of Sciences

> Supervisor: Jiancheng Yang (建成 杨) Special thanks to C. Rogers

> > 2024.7.4

zhuruihu@impcas.ac.cn

IMP

Error analysis (π-mode stage5)

param cell_length=900 param solpos1=0.09472161930764822 param coil_length1=78.88455942289049 param coil_radius1=110 param coil_width1=80 param current1=218.29618904749944 param solpos2=0.28989090791358113 param coil_length2=210.41528714423515 param coil_radius2=260 param coil_width2=190 param current2=149.40015444416457

param rf_length=188 param rf_fre=0.704 param rf_grad=26.254094132273284 param rf_ph=23.832963383834894

param wedge_window_length=0.09 param rf_window_length=0.03

Error analysis (π-mode stage5)

- Simulation setup:
- Generate random numbers (errors) from truncated Gaussian distribution (3sigma, mean=0, sigma).
- Add these random numbers (errors) to the coils and RF cavities.
- Run the tracking simulation for 100 times. Average the emittance and transmission.

Current error of solenoid coils

Error _{sigma}	ε _T (mm)	ε _L (mm) ε _{6D} (mm³) ⁻		Transmission	
0	0.7082	2.569	1.367	0.9	
0.1%	0.7068	2.573	1.358	0.9	
0.2%	0.7115	2.579	1.38	0.9	
0.3%	0.722	2.583	1.415	0.898	3
0.4%	0.7295	2.59	1.458	0.897	(1)
0.5%	0.7419	2.602	1.513	0.895	د
0.6%	0.758	2.604	1.581	0.892	
0.7%	0.7737	2.623	1.656	0.888	
0.8%	0.8005	2.646	1.794	0.882	
0.9%	0.8206	2.661	1.896	0.876	
1%	0.8429	2.671	2.014	0.871	

IM

Performance starts to degrade when current error is above 0.3%.

Position error of solenoid coils

Move solenoid coils transversely (x and y) and longitudinally (z)

IM

Error _{sigma} (mm)	ε _⊤ (mm)	ε _L (mm)	ε _{6D} (mm³)	Transmission	
0	0.7082	2.569	1.367	0.9	
0.1	0.7151	2.574	1.386	0.9	3)
0.2	0.7488	2.578	1.499	0.897	444
0.3	0.7978	2.581	1.676	0.893	c
0.4	0.8624	2.585	1.932	0.886	
0.5	0.9491	2.591	2.306	0.875	
0.6	1.041	2.619	2.772	0.858	

Performance starts to degrade when position error is above 0.1 mm.

Although position error perturbs By and Bx, only transverse emittance has obvious change.

Position error (mm)

Rotation error of solenoid coils

Rotate solenoid coils transversely (x and y) and longitudinally (z)

Error _{sigma} (deg)	ε _⊤ (mm)	ε _L (mm)	ε _{6D} (mm³)	Transmission	
0	0.7082	2.569	1.367	0.9	
0.01	0.7145	2.576	1.384	0.9	
0.02	0.7432	2.577	1.48	0.898	
0.03	0.7892	2.574	1.643	0.894	
0.04	0.848	2.574	1.871	0.887	
0.05	0.9145	2.58	2.155	0.877	
0.06	0.9947	2.587	2.498	0.864	

Performance starts to degrade when rotation error is above 0.01 deg.

Although rotation error perturbs By and Bx, only transverse emittance has obvious change.

Gurrent+position+rotation error of solenoid construction

Error _{sigma} (mm deg)	ε _T (mm)	ε _L (mm)	ε _{6D} (mm³)	Transmission
000	0.7082	2.569	1.367	0.9
0.1% 0.1 0.01	0.7278	2.577	1.43	0.899
0.2% 0.2 0.02	0.79	2.584	1.652	0.893
0.3% 0.3 0.03	0.8912	2.597	2.075	0.881
0.4% 0.4 0.04	1.004	2.619	2.605	0.86

Performance starts to degrade when combination error is above (0.1% 0.1mm 0.01 deg).

Case number

Gradient and phase error of RF cavities

Gradient error

Error _{sigma}	ε _T (mm)	ε _L (mm)	ε _{6D} (mm³)	Transmission
0	0.7082	2.569	1.367	0.9
1%	0.7067	2.570	1.356	0.9
10%	0.7136	2.585	1.397	0.896

10% RF gradient and phase error still don't affect performance.

➢ Phase error

Error _{sigma}	ε _⊤ (mm)	ε _L (mm) ε _{6D} (mm³)		Transmission
0	0.7082	2.569	2.569 1.367	
1%	0.7072	2.569	1.357	0.9
10%	0.7099	2.583	1.379	0.9

RF failure

As pi-mode RF cells are coupled, if one RF cell doesn't work, the other two in the same RF structure will stop working as well.

Number of RF structure in failure	ε _⊤ (mm)	ε _L (mm)	ε _L (mm) ε _{6D} (mm³)	
0	0.7082	2.569	2.569 1.367	
1	0.7203	2.620	1.455	0.89
2	0.7289	2.660	1.528	0.876
3	0.7302	2.701	1.548	0.863
4	0.7455	2.762	1.668	0.843

Failure of one RF structure (3 cavities) doesn't influence performance too much.

Empty cooling cells

No RF cavities and absorbers in empty cooling cells. The empty cooling cells are for alignment and other beam instrumentation.

Error	Number of empty cells	8⊥ (mm)	ε# (mm)	86D (mm^3)	Transmission	Merit factor
0	0	0.7082	2.569	1.367	0.9	1.32139
3	16	0.7749	3.425	2.079	0.875	1.01685
4	12	0.7354	2.921	1.668	0.889	1.17879
5	9	0.7875	2.954	1.925	0.881	1.08479
6	8	0.7811	2.984	1.95	0.883	1.09064
7	6	0.7496	3.14	1.887	0.862	1.08153
8	6	0.7536	3.005	1.83	0.856	1.09203
9	5	0.8306	3.646	2.722	0.859	0.90265
10	4	0.787	3.409	2.318	0.861	0.98751
11	4	0.7403	2.784	1.579	0.87	1.17382
12	4	0.7328	2.753	1.614	0.886	1.21443
13	3	0.7453	2.772	1.632	0.892	1.19802
14	3	0.7253	2.781	1.562	0.89	1.2263
15	3	0.7387	2.698	1.595	0.889	1.22106
16	3	0.7475	2.736	1.665	0.89	1.19963
17	2	0.7456	2.759	1.631	0.888	1.19497
18	2	0.7559	2.839	1.749	0.887	1.16065
19	2	0.7416	2.859	1.707	0.89	1.18288
20	2	0.7327	2.808	1.627	0.892	1.21078

Empty cooling cells

Conclusions

For the demo-like B-stage 5:

- The errors on the solenoid coils won't affect the cooling as long as they are not too huge.
- The errors on the gradient and phase of RF don't matter to cooling.