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Motivation / Outline 
- Challenges in PDF determination and precision theory

- reformatting a phenomenological PDF fit as an inverse problem 
- physics constraints (lattice QCD inputs, theory constraints)
- Uncertainty quantification - major limitation in physics searches

- A jumble of questions with machine learning
- How do we quantify uncertainties? 

- Aleatoric / epistemic ( / distributional OOD) separation?
- Can we dissect and explain the ‘black-box’? 
- Repurpose standard ML tools for physics discovery … 

- Works:
- reconstruct PDFs from their Mellin moments 
- explore explainability techniques
- uncertainty quantification studies

BK, T.J. Hobbs  arXiv: 2312.02278
BK, J. Gomprecht, T.J. Hobbs  arXiv: 2407.03411

BK, T.J. Hobbs arXiv: 2412.XXXXX
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Generative AI for Inverse Problems 

BK, T.J. Hobbs  arXiv: 2312.02278 (accepted to PRD)

Using variational autoencoder 
as powerful generative model 
to generate solutions to 
inverse problems.

The latent variables are 
organized into interpretable 
physics constraints such as 
Mellin moments calculated on 
the lattice.
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Generative AI for Inverse Problems 

BK, T.J. Hobbs  arXiv: 2312.02278 (accepted to PRD)

By constraining the latent 
dimensions, squeezing the 
bottleneck, one can force the AI 
to generate physics-like 
properties.

With a large latent space, information is too free 
to create spurious correlations between 
moments and PDFs – not physics.



Probabilistic AI / ML
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Probabilistic machine learning is an interpretation of AI / ML in which one thinks of 
the outputs of a specific machine model as learning the parameters of some 
probability distribution which describes your data. Ex. classification models learn 
the parameters of a categorical distribution.

Dog: 98 %
Cat: 1.8 %
Bird: 0.2 % 
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ML can be confidently wrong

The problem with AI / ML is it can often be really confidently wrong!

Dog: 23 %
Cat: 65 %
Bird: 12 % 

WEIRD!
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Uncertainty Quantification

What we want is more like this.

Dog: 0.3 %
Cat: 0.2 %
Bird: 0.5 %
Idk?: 99% 

This is why techniques like explainability (XAI) and uncertainty quantification (UQ) 
are important. Probabilistic AI / ML offers a mathematical language for these 
techniques. How to introduce this 4th category?

Much 
better!
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Uncertainty Quantification
There are many open questions in phenomenological fitting of PDFs, many of 
which boil down to the open question of parameterization dependence: “How 
to effectively capture the associated effects of underlying theory assumptions 
on the fitted shape of the PDFs?”

Model discrimination among 
classes of parton densities - a 
classification problem. We can 
therefore trace-back the 
classification score to the 
x-dependence of the PDF (XAI).
How do we map 
parameterizations to some known 
space and quantify overlaps?

BK, J. Gomprecht, T.J. Hobbs  JHEP 11 (2024) 007
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Uncertainty quantification 
for classification
Bayesian Neural Networks

where through Monte Carlo sampling of 
the model parameters, we can create an 
ensemble of models which induces a 
distribution over the output.

Aleatoric Epistemic

There is an implicit prior 
distribution which is generating 
this ensemble of categorical 
distributions - an implicit Dirichlet.

9
Class 1

Class 2

Class 3
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Aleatoric / Epistemic Uncertainties

10

Through Maximum Likelihood Estimation (MLE) training we can 
approximately factorize the total uncertainty into pieces coming from the 
underlying data distribution (aleatoric) and the model’s capabilities to 
recreate the data distribution (epistemic).

Epistemic: reducible in theory, 
trickier to define in practice.

Aleatoric: irreducible, directly 
from underlying data 
distribution.
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Evidential Deep Learning

(Dirichlet) Prior Networks - making the implicit explicit

Aleatoric EpistemicDistributional

We can explicitly model the dependence on the prior of the 
ensemble. In a single forward pass, we can describe aleatoric, 
epistemic, and distributional uncertainties.

Malinin and Gales arXiv:1802.10501 11
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Separation of Uncertainties
Aleatoric Epistemic Distributional

The uncertainty from 
the inherent noise or 
variability in the true 
underlying data 
distribution. Cannot 
be reduced by 
adding more training 
data nor by improving 
the training 
procedure. 

The uncertainty of 
how well the machine 
learning model has 
learned the underlying 
distribution of the 
data. Can be 
reduced by adding 
training data and 
improving training 
procedures.

A form of epistemic 
uncertainty, represents 
the uncertainty of your 
choice of probability 
distribution to represent 
your data. Often reflected 
through uncertainty when 
encountering an example 
not represented in the 
training set.

12Malinin and Gales arXiv:1802.10501
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Dirichlet Prior Networks - an example

In-distribution sampling with low 
data uncertainty (samples are 
located on a corner of the simplex) 
and low knowledge uncertainty 
(high sample density).
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Dirichlet Prior Networks - an example

In-distribution sampling with high 
data uncertainty (samples are 
squeezed to the center of the 
simplex) with low knowledge 
uncertainty (high sample density).
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Dirichlet Prior Networks - an example

Out-of-distribution sampling with 
high data uncertainty (samples are 
diffuse) and high knowledge 
uncertainty (low sample density).
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Dirichlet Prior Networks - an example

We can separate the classification uncertainty into aleatoric (high in regions of high class 
overlap) and epistemic (high in regions where there is no data). Information theory 
description through the entropy and mutual information.
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Uncertainty Quantification with prior 
networks

BK, T.J. Hobbs  arXiv: 2412.XXXXX

Mapping parametric theory 
space of BSM models

We construct mock BSM 
configurations EW standard 
model parameters in CC 𝜈-DIS 
cross section. 

Construct latent space and use 
UQ metrics to study how these 
models overlap.

Dirichlet prior networks and classification for model 
discrimination.

17
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Uncertainty Measures 
for model overlap 

Quantitative information theory 
measures  of where models overlap 
and are confused by the classification 
scheme …

… and where there is no data. Seems trivial in 
2D but in higher dimensions it becomes even 
more important.

18BK, T.J. Hobbs  arXiv: 2412.XXXXX



Brandon Kriesten  ●  19 November 2024  ●  Argonne National Laboratory

Future work 

19BK, T.J. Hobbs  (in progress)

Mapping PDF parameterizations to constrained embedding space based on 
similarity metrics (contrastive learning). Model discrimination and generation 
in these spaces.
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UQ takeaways 
Explainability and uncertainty quantification techniques are essential tools to 
understand learned behaviors from machine learning algorithms. Are ML 
algorithms learning physics and do we care?

Aleatoric uncertainty - irreducible - associated with inherent noise in training 
data. Tensions between data representation and class label.
Epistemic uncertainty - reducible - how well is your model learning the 
underlying training data distribution.
Distributional uncertainty - reducible - how well does your assumed prior 
match the true learned behavior of the data. Out of distribution sampling.

Extrapolation in ML models must be treated with extreme caution due to 
overconfidence in regions where there is no training data. (not negative!)



The research I have discussed here is the nucleus of a 
wide-reaching program culminating in comprehensive 
phenomenological fits with uncertainty quantification.

Generative AI offers a transformative approach to inverse problem 
solutions, driving the next wave of precision phenomenology by 
pushing beyond traditional methods. We need to understand how 
these models work with XAI and UQ methods.

Goal: Frontier discoveries for precision physics and more accurate 
predictions for high impact measurements at future colliders.

Conclusions 
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Thank you for your attention!
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Backup Slides
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Black-box
model

Ex
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Accuracy

Linear Regression

Decision Trees

Neural Network

Ensembles

SVM

K-nearest Neighbors

Bayesian Models

Explainability vs.  accuracy
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Explainability … a fun example!

Guided Backprop gradCAM

Guided gradCAM

Gradients Gradients ⊙ Input

Integrated Gradients smoothGrad Occlusion Edge Detection

Input

A survey of techniques

25
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Picking out features from image with 
multiple possible labels

Original Dog Cat
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Guided backpropagation 

Guided backprop is a “re-purposing” of the auto 
differentiation process in ML in which the gradients of a neural 

network layer are masked during a single backpropagation 
pass holding the weights fixed post-learning to determine 

which input features positively affect the classification 
outcome the most. 

Simonyan et. al. arXiv: 1312.6034
27
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Guided backpropagation

The double-masking procedure during backpropagation generates 
highly detailed saliency maps, effectively highlighting fine-grained 

input features that most influence the network's output.
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Classifying PDFs from salient features 

Train a ResNet-like model on PDF MC replicas to identify salient features in 
x-dependence for classification tasks.

BK, J. Gomprecht, T.J. Hobbs  JHEP 11 (2024) 007

Fitting methodology: can we 
trace effects from the 
underlying theory back to the 
x-dependence of the PDF?

29
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XAI4PDF: Explainability for fitted PDFs

The  two analyses which are “furthest” from 
each other (CT18  and CT18Z) are also the 
least confused, confirming that the shift in 
theory assumptions drives the statistical 
distinguishability as inferred by the XAI 
calculation.

BK, J. Gomprecht, T.J. Hobbs  JHEP 11 (2024) 007 30
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XAI4PDF: Explainability for fitted PDFs
The strange and gluon PDFs 
stand out while discerning 
between different theory 
fits!

The gluon replicas have a 
dominant role in the 
classification among the 
CT18 series with highly 
localized gradients.

The strange replicas have 
smoother gradients 
indicating a weaker role.

BK, J. Gomprecht, T.J. Hobbs  JHEP 11 (2024) 007 31
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Guided backpropagation

Forward Pass Logic 
Gate

Ensures only positive 
activations in the ℓth layer are 
considered when 
backpropagating the 
gradient. Prevents input from 
negative activations in the 
forward flow of information.
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Backward Gradient 
Logic Gate

Ensures only positive 
gradients from the (ℓ+1)th layer 
are considered when 
backpropagating the 
gradient. Prevents negative 
gradients in the backward 
flow of information.

Guided backpropagation
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Mapping Beyond Standard Model 
theory landscape

Image: Hallin et. al. 2407.20315

There is significant effort to map the 
theoretical landscape of BSM 
configurations.

This will help us understand where 
theoretical models are lacking.

But how do we define where models 
overlap or are just simply missing? A 
model discrimination task … 
classification with uncertainty 
quantification.
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