Xiang Gao Brookhaven National Laboratory

Non-perturbative Collins-Soper kernel from a Coulomb-gauge-fixed quasi-TMD

Parton Distributions and Lattice Calculations (PDFLattice 2024) @ Jlab Nov 18 – 20, 2024

² **Transverse-momentum-dependent distributions**

 \bullet 3D image: longitudinal momentum fraction x and confined motion k_T . • Nucleon spin structure: Spin-orbit correlations.

³ **TMDs from global analyses of experimental data**

*dσ*DY *dQdYdq*² *T* $= H(Q,\mu)$ $\int d^2$ $\vec{b}_T e^{i \vec{q}_T \cdot b}$ **Solution**

Semi-Inclusive DIS

 $\sigma \sim f_{q/P}(x, k_T) D_{h/q}(x, k_T) \quad \sigma \sim f_{q/P}(x, k_T) f_{q/P}(x, k_T) \quad \sigma \sim D_{h_1/q}(x, k_T) D_{h_2/q}(x, k_T)$

$$
T f_q(x_a, \vec{b}_T, \mu, \zeta_a) f_q(x_b, \vec{b}_T, \mu, \zeta_b) [1 + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)]
$$

Nonperturbative TMDs kernels *q*²

 $q_T^2 \ll Q^2$

Perturbative hard

Drell-Yan Dihadron in ete-

$$
\mu \frac{d}{d\mu} \ln f_q(x, \vec{b}_T, \mu, \zeta) = \gamma^q_\mu(\mu, \zeta)
$$

$$
\zeta \frac{d}{d\zeta} \ln f_q(x, \vec{b}_T, \mu, \zeta) = \gamma^q_\zeta(\mu, b_T)
$$

4 **TMDs from global analyses of experimental data**

• Relate TMDs at different energy scales

•V. Moos, et. al. (ART23), JHEP 05 (2024) 036

Collins-Soper kernel

⁵ **Determination of TMDs**

-
- Complementary knowledge from

6 **The definition of TMDs**

 $f_q(x, b_T, \mu, \zeta) = \lim_{\epsilon \to 0}$ $\epsilon \rightarrow 0$

 $Z_{\rm UV}(\epsilon,\mu,\zeta) \lim_{\epsilon\rightarrow 0}$ *τ*→0 $B_q(x, b_T, \epsilon, \tau, \zeta)$ $S_q(b_T, \epsilon, \tau)$ Soft function **UV regulator Rapidity regulator**

Beam function

Light-cone correlations: forbidden on Euclidean lattice

$$
\langle P|\overline{\psi}(\frac{b^+}{2},b_\perp)\Gamma W_{\exists^+}\psi(-\frac{b^+}{2},0)|P\rangle
$$

7 **TMDs from lattice: quasi TMDs** •Ji, Liu and Liu, NPB ⁹⁵⁵ (2020), PLB ⁸¹¹ (2020);

-
- •A. Vladimirov, A. Schäfer Phys.Rev.D 101 (2020), 074517
- •I. Stewart, Y. Zhao et al., JHEP 09 (2020) 099
- •X. Ji et al., Phys.Rev.D 103 (2021) 7, 074005
- •I. Stewart, Y. Zhao et al., JHEP 08 (2022) 084

Quasi-TMDs from equal-time correlators:

• Computable from Lattice QCD.

•Quasi TMDs differ from the light-cone TMDs (Collins scheme) by order of P_z (or rapidity y_B) $\rightarrow \infty$ and a (or ϵ) $\rightarrow 0$ limit, inducing a **perturbative**

8 **Large** *Pz* **expansion and perturbative matching**

$$
\frac{\tilde{\phi}(x, \vec{b}_T, \mu, P_z)}{\sqrt{S_r(\vec{b}_T, \mu)}} = C(\mu, xP_z)e^{\frac{1}{2}\gamma_{\zeta}(\mu, b_T)\ln\frac{(2xP_z)^2}{\zeta}}f(x, \vec{b}_T, \mu, \zeta)\{1 + \mathcal{O}[\frac{1}{(xP_zb_T)^2}, \frac{\Lambda_{QCD}^2}{(xP_z)^2}]\}
$$
\n
$$
P_{\zeta} < a^{-1}
$$

-
- $\mathsf{matching}~C(\mu, xP_z).$

• Have same IR physics as light-cone TMDs: large momentum expansion.

Quasi TMDs Collins-Soper kernel

•A. Avkhadiev, P. Shanahan, M. Wagman, Y. Zhao, PRL 132 (2024) 23, 231901

Collins-Soper kernel

9 **The Collins-Soper kernel from quasi-TMDs**

Very difficult: errors grow rapidly!

- Significant progress has been reported recently.
- Can lattice QCD push further with good precision?

¹⁰ **Difficulties in the conventional quasi-TMDs**

• Exponential decaying signal and complicated renormalization due to the Wilson line artifacts.

Linear divergence from Wilson line self energy

Bare matrix elements

Light-cone TMD

11 **Overcoming difficulties**

• **XG**, W.-Y. Liu, Y. Zhao, PRD 109 (2024) 9, 094506 • Y. Zhao, arXiv: [2311.01391,](https://arxiv.org/abs/2311.01391) accepted by PRL.

12 **Overcoming difficulties: Coulomb-gauge qTMDs**

Quasi-TMD in physical gauge

$$
\psi_C(z) = U_C(z)\psi(z)
$$

• The quark field in the Coulomb gauge

satisfying,

$$
\overrightarrow{\nabla} \cdot \left[U_C \overrightarrow{A} U_C^{-1} + \frac{i}{g} U_C \overrightarrow{\nabla} U_C^{-1} \right] = 0
$$

order by order in *g*, the solution:

$$
U_C = \sum_{n=0}^{\infty} \frac{(ig)^n}{n!} \omega_n
$$

$$
\omega_1 = -\frac{1}{\nabla^2} \vec{\nabla} \cdot \vec{A},
$$

$$
\omega_2 = \frac{1}{\nabla^2} \left(\vec{\nabla} \cdot (\omega_1^{\dagger} \vec{\nabla} \omega_1) - [\vec{\nabla} \omega_1, \vec{A}] \right)
$$

...

\blacktriangleright *P* $\rightarrow \infty$ **limit** boost

13 **CG quasi distribution without Wilson lines**

$$
\frac{\mathbf{e}}{\nabla^2} \vec{\nabla} \cdot \vec{A} = i \int \frac{d^4 k}{(2\pi)^4} e^{-ik \cdot z} \frac{1}{k_z^2 + k_\perp^2} [k_z A_z(k) + k_\perp A_\perp(k)]
$$

$$
\approx i \int \frac{d^4 k}{(2\pi)^4} e^{-ik \cdot z} \frac{k^+}{(k^+)^2 + \epsilon^2} A^+(k)
$$

$$
= \frac{1}{2} \left[\int_{-\infty^-}^{z^-} + \int_{+\infty^-}^{z^-} \right] d\eta^- A^+ \equiv \frac{1}{\partial_{\text{P.V.}}^+} A^+(z)
$$

Principle value prescription (P.V.) averaging over past and future. **Path-ordered integral**

$$
\frac{\omega_n}{n!} \to \left(\dots \left(\frac{1}{\partial_{P.V.}^+} \left(\frac{1}{\partial_{P.V.}^+} A^+ A^+ \right) A^+ \right) \dots A^+ \right)
$$

$$
U_C \to \mathcal{P} \exp \left[-ig \int_{z^-}^{\mp \infty^-} dz A^+(z) \right] \equiv W(z^-, \mp \infty^-)
$$

Infinite light-cone Wilson link

¹⁴ **CG quasi-TMDs without Wilson lines**

 $\psi(\frac{z}{2},b_1)$ •The **same form of factorization formula** as the conventional gauge invariant (GI) method (verified through SCET), with different perturbative and power corrections.

 $= C(\mu, xP_z)e$

•**Can the CG quasi-TMDs avoid the complexity from Wilson line?**

^T, *μ*)

 $f_C(x, b_T, \mu, P_z)$

 $S_C(b)$

 \widetilde{f}

 $\bar{\psi}(-\frac{z}{2},0)$

$$
\frac{1}{2}\gamma_{\zeta}(\mu,b_T)\ln\frac{(2xP_z)^2}{\zeta}f(x,\vec{b}_T,\mu,\zeta)\{1+\mathcal{O}[\frac{1}{(xP_zb_T)^2},\frac{\Lambda_{QCD}^2}{(xP_z)^2}]\}
$$

• Y. Zhao, arXiv: [2311.01391](https://arxiv.org/abs/2311.01391), accepted by PRL.

• Y.-Z. Liu, Y.-S. Su., JHEP 02 (2024) 204

Quasi TMDs in CG Physical TMD

⟨Ω|*ψ*($\frac{b_z}{2}$, b_{\perp}) $\Gamma \psi$ ($-\frac{b_z}{2}$,0) $|\frac{1}{\nabla}$. $\overrightarrow{A=0}$ $|\pi^+, P_z\rangle$ ⃗

Gauge-invariant (GI) quasi-TMDWF

15 **Quasi-TMDs in the Coulomb gauge**

Coulomb gauge (CG) quasi-TMDWF

 $\left\langle \Omega\,|\,\overline{\psi}\right\rangle$ *b*_z, *b*_⊥)Γ*W*_コ*z* ψ (- $\frac{b_z}{2}$,0)|*π*⁺, *P*_{*z*})

¹⁶ **CG quasi-TMDs: simplified renormalization**

$$
\left[\overrightarrow{\psi}(-\frac{\overrightarrow{b}}{2})\Gamma\psi(\frac{\overrightarrow{b}}{2})\right]_B = Z_{\psi}(a)\left[\overrightarrow{\psi}(-\frac{\overrightarrow{b}}{2})\Gamma\psi(\frac{\overrightarrow{b}}{2})\right]
$$

• No linear divergence: the renormalization is an overall constant.

17 **CG quasi-TMDs: enhanced long-range precision**

• D. Bollweg, **XG**, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

Domain wall fermion, physical quark masses $64^3 \times 128$, a = 0.084 fm

• CG shows much slower signal decay

18 **CG quasi-TMDs: enhanced long-range precision**

• D. Bollweg, **XG**, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

Domain wall fermion, physical quark masses $64^3 \times 128$, a = 0.084 fm

• The CS kernel $\gamma^{\text{MS}}(b_\perp, \mu)$ is **independent** (universal) of P_z and x , up to higher-order and power corrections.

19 The Collins-Soper Kernel from CG quasi-TMDWF
\n
$$
\gamma^{\overline{MS}}(b_{\perp}, \mu) = \frac{1}{\ln(P_2/P_1)} \ln \left[\frac{\tilde{\phi}(x, b_{\perp}, P_2, \mu)}{\tilde{\phi}(x, b_{\perp}, P_1, \mu)} \right] + \delta \gamma^{\overline{MS}}(x, \mu, P_1, P_2) + \mathcal{O}\left(\frac{\Lambda_{QCD}^2}{(xP_z)^2}, \frac{1}{(b_{\perp}(xP_z))^2}\right)
$$

Evolution of quasi-TMDWFs: $P_1 \rightarrow P_2$

 $a = 0.084$ fm, $P_z = n_z \cdot 0.23$ GeV

- First-principle determination with no model dependence.
- Consistent with most recent global fits and lattice results from GI operators.
- Showing ^a near-linear dependence on b_T .

20 **Nonperturbative Collins-Soper kernel**

Domain wall fermion, physical quark masses $64^3 \times 128$, a = 0.084 fm

• D. Bollweg, **XG**, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

• D. Bollweg, **XG**, S. Mukherjee, Y. Zhao, PLB 852 (2024) 138617

21 **Nonperturbative Collins-Soper kernel**

Summary

• The TMDs can be extracted from quasi-TMD correlators. The novel CG quasi-TMDs have several advantages with an emphasize of the enhanced

• We computed the quasi-TMD wave functions in the CG using a chiral lattice discretization at the physical pion mass. The extracted non-perturbative CS kernel appears to be consistent with recent parametrization of experimental

- long-range precision.
- data.
- the gluons and the Wigner distributions.

• The CG methods could have broader use in the future particularly in the precision calculation of non-perturbative regime of TMD physics, including

Thanks for your attention!

Back up

$\left\vert P_{1}/P_{2}\right\vert$ • The CS kernel $\gamma^{\rm MS}(b_{\perp}, \mu)$ is **independent** (universal) of P_z and x , up to higher-order and power corrections.

²⁴ **The Collins-Soper kernel from CG quasi-TMDWF** $\gamma^{\text{MS}}(b_\perp, \mu) =$ 1 $ln(P_2/P_1)$ $\ln |$ *ϕ* \widetilde{b} $(x, b₁, P₂, \mu)$ *ϕ* \widetilde{b} $\left[\frac{(x, b_1, r_2, \mu)}{(x, b_1, P_1, \mu)}\right]$ + $\delta \gamma^{\text{MS}}(x, \mu, P_1, P_2)$ + 6 Λ_QCD^2 $\frac{\sqrt{2}}{(xP_z)^2}$ 1 $(b_{\perp}(xP_z))^2$ **Perturbative correction**

$$
\gamma^{\overline{\text{MS}}}(b_{\perp}, \mu) = \frac{1}{\ln(P_2/P_1)} \ln \left[\frac{\tilde{\phi}(x, b_{\perp}, P_2, \mu)}{\tilde{\phi}(x, b_{\perp}, P_1, \mu)} \right]
$$

Ratio of quasi-TMDWFs

• The CG quasi-TMD wave functions are more stable and show better signal.

25 **Quasi-TMD wave functions after F.T.**

