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Motivation

• Precision measurements need precise PDFs
• PDF fitting groups have to contend with tension in data

• Many strategies to deal with this: For example, the use of tolerance Δ𝜒! =	𝑇!

• This talk will describe the use of  Gaussian Mixture Model (GMM) and 
how it can be used to
• find inconsistencies or tension in data sets 
• Implement Bayesian Model Averaging (BMA) in order to determine uncertainties 

in a statistically robust way. 
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What is the Gaussian Mixture Model?

• Widely used an unsupervised machine learning technique
• Could be used to classify PDF data

• Class of Finite Mixture Models
• https://doi.org/10.1146/annurev-statistics-031017-100325

• Widely used in astronomy and astrophysics to distinguish between different 
sources in the sky 

• First proposed by Karl Pearson (1894) – to study characteristics of a population of 
crabs

• Focus of this talk: How can this machine learning technique be used to implement 
Bayesian Model Averaging for uncertainties in PDFs?
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https://doi.org/10.1146/annurev-statistics-031017-100325
https://doi.org/10.1098/rsta.1894.0003


Outline

• Motivation for GMM use in PDFs 
• Description of Gaussian Mixture Model(GMM) in a simple 1-D example
• Formalism: Bayesian Model Averaging
• Demonstrate idea with a toy model of PDFs
• Summary
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Simple 1-D example



Measuring Mass (Weight) PHY-101 Lab

• Measure mass of W-boson
• Repeat measurement several times
• Minimize log-likelihood or loss function

• 𝜒! = ∑"
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• Determine best-fit value
• 𝑚* 	= 𝜇 = 80.36 ± 0.016	𝐺𝑒𝑉

ATLAS-CONF-2023-004

Manufactured by ATLAS 5

https://cds.cern.ch/record/2853290


Measuring Mass (Weight) PHY-101 Lab

Manufactured by CDF Manufactured by ATLAS

Repeat measurements with another balance 
CDF Science 376 (2022) 

𝑚*
+,- = 80.433 ± 0.009	𝐺𝑒𝑉

𝑚*
./0.1 = 80.36 ± 0.016	𝐺𝑒𝑉 6
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https://inspirehep.net/literature/2064224


Measuring Mass (Weight) PHY-101 Lab
• How should we combine these two discrepant measurements to give one 

value of mass?
• Attempt #1: Let’s repeat earlier exercise

• Minimize loss function

• 𝜒' = ∑(
)	+,! "

-!
"

• 𝑚. = 80.415 ± 0.011	𝐺𝑒𝑉

• 2𝜎 band does not cover both means
• How should we interpret this?

• One familiar proposal
• Increase tolerance Δ𝜒! = 𝑇!; 𝑇 > 1 
• Does not provide a faithful representation of the probability distribution of 𝑚*, 

drawn from our sample of experiments 7



Shortcomings of 𝜒9 fits 
• Why didn’t our usual approach reproduce the probability distribution 

function for 𝑚0   work?
• In this simple example

• We ignored individual likelihoods from  each experiment
• We minimized the 𝜒! which is

• Just like taking the weighted mean
• And adding errors in quadrature
• Then defining a new gaussian likelihood (green)
• Starting assumption is that 𝑚. likelihood is a single gaussian
• Good assumption if data is consistent

• Attempt #2: Combine likelihoods
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Combining Likelihoods – Gaussian Mixture Model

• Start by parameterizing the likelihood as a 
sum of Gaussians 

• In this simple example we know there are two 
Gaussians, i.e. K= 2

• In general, the value of K needs to be determined – 
discussed later

• Introduced a new parameter 𝜔2  - weights
• Constraints on 𝜔/; ensures proper normalization and 

interpretation as a probability distribution function
• For simplicity we’ll use equal weights here
• In reality – it is an additional fit parameter
• See Interpretation in Bayesian formalism later.

Combined 
Likelihood
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Determine mean and variance for GMM

Mean

Weighted sum of covariances 
of each Gaussian

Difference 
between 

Gaussians

𝜇𝜇	 − 𝜎 𝜇 + 𝜎

Here we use the variance as an estimator for 
the standard error.
Alternatively, we could use the Observed 
Fisher Information Matrix 10PDFLattice2024     Kirtimaan Mohan



Determine mean and variance for GMM

Mean

Weighted sum of covariances 
of each Gaussian

Difference 
between 

Gaussians

𝜇

𝜇	 − 𝜎

𝜇 + 𝜎

Caveat about green curve: because we are 
used to it, it is possible to model this as a 
single Gaussian (green) – but we must be 
careful -  it is not a faithful representation of 
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Formalism

Bayesian Model Averaging



Review of Bayesian Formalism for 𝜒9
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Data

See Kovarık, Nadolsky & Soper arXiv:1905.06957 

https://arxiv.org/abs/1905.06957


Bayesian Model Averaging and GMMs
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Data from K different experiments

Bayes’ 
Theorem

Likelihood 
of GMM



Bayesian Model Averaging (BMA)
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See also talk by Ethan Neil 
and arxiv:2008.01069

https://indico.cern.ch/event/1434067/contributions/6180632/
https://arxiv.org/pdf/2008.01069


Application of GMM and BMA to a toy model of PDFs



Pseudo-data generation

“truth”

Central value

Uncertainty

Parameters of model: {𝑎3, 𝑎4, 𝑎!, 𝑎5, 𝑎6, 𝑎7}

Inconsistent Pseudo-data generated by 
starting with different values of 𝑎6	&	𝑎7

A toy model of PDFs with inconsistent data



Fits to pseudo-data

LS-A

LS-BLS-C

LS-A

LS-B

LS-CLS-A: Data set 1 only
LS-B: Data set 2 only
LS-C: Combines all 
data



Comparison with 
Tolerance: Δ𝜒( = 𝑇( ⇒
68%	𝐶. 𝐿.

Fits to pseudo-data using the GMM

LS-A

LS-B

LS-C

GMM
“1𝜎”

GMM uncertainty ellipse spans both replica sets. Unlike 
usual 𝜒2 method
Axis of ellipse is different – covers uncertainties from 
individual data sets
Tolerance criteria both over and  underestimates 
uncertainties in different regions



GMM reduces to the 𝝌𝟐 likelihood (K= 𝟏), when data is consistent  



How many Gaussians? How do we determine K?

Akaike Information Criterion (AIC)
(Akaike, 1974) 
Bayesian Information Criterion (BIC)
Schwarz (Ann Stat 1978, 6:461–464)

Strong tension

Weak tension 
due to large 
uncertainty

Consistent but 
data fluctuated

Consistent - No 
fluctuation

Use the lowest values of AIC & 
BIC to determine the best value of 
K and avoids over-fitting.

10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136


Summary & Outlook
• Showed how to repurpose the GMM, a well-known machine learning classification tool, as a 

statistical model to estimate uncertainty in PDF fits
• Can also be used to classify PDF fitting data and find tensions in data sets – 

unsupervised machine learning task
• Provides an implementation of Bayesian Model Averaging, to provide statistically robust 

estimates of uncertainty.
• Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF 

uncertainty estimation
• Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn

• Here I only showed tension due to experimental inconsistencies, but this also applies to 
tension resulting from imprecise theoretical predictions.

• Can be used to determine a value of Tolerance in order to connect with existing prescriptions.
• Next steps: Apply to real data and pdf fit.
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