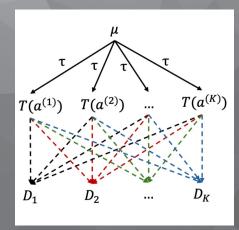


Mixture Models for Uncertainty Quantification in PDFs

Kirtimaan Mohan – Michigan State University with

Mengshi Yan, Tie-Jiun Hou, Zhao Li & C.-P. Yuan arxiv: 2406.01664

@PDFLattice2024 - JLab



Motivation

- Precision measurements need precise PDFs
- PDF fitting groups have to contend with tension in data
 - Many strategies to deal with this: For example, the use of tolerance $(\Delta \chi^2 = T^2)$
- This talk will describe the use of Gaussian Mixture Model (GMM) and how it can be used to
 - find inconsistencies or tension in data sets
 - Implement Bayesian Model Averaging (BMA) in order to determine uncertainties in a statistically robust way.

What is the Gaussian Mixture Model?

- Widely used an unsupervised machine learning technique
 - Could be used to classify PDF data
- Class of Finite Mixture Models
 - https://doi.org/10.1146/annurev-statistics-031017-100325
- Widely used in astronomy and astrophysics to distinguish between different sources in the sky
- First proposed by <u>Karl Pearson (1894)</u> to study characteristics of a population of crabs
- Focus of this talk: How can this machine learning technique be used to implement Bayesian Model Averaging for uncertainties in PDFs?

Outline

Motivation for GMM use in PDFs

- Description of Gaussian Mixture Model(GMM) in a simple 1-D example
- Formalism: Bayesian Model Averaging
- Demonstrate idea with a toy model of PDFs
- Summary

Simple 1-D example

Measuring Mass (Weight) PHY-101 Lab

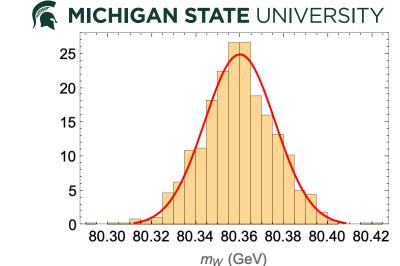
- Measure mass of W-boson
- Repeat measurement several times
- Minimize log-likelihood or loss function

•
$$\chi^2 = \sum_i \frac{(\mu - x_i)^2}{\sigma_i^2}$$

•
$$L = \prod_{i} \frac{e^{\left[\frac{(\mu - x_i)^2}{\sigma_i^2}\right]}}{\sqrt{2\pi}\sigma_i}$$

- Determine best-fit value
 - $m_W = \mu = 80.36 \pm 0.016 \, GeV$

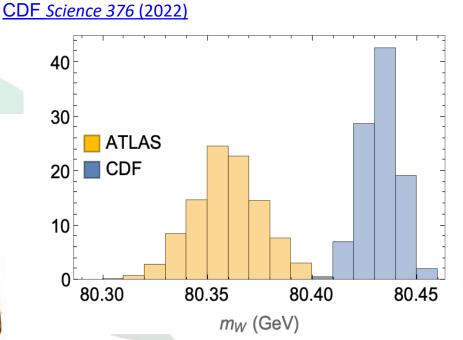
ATLAS-CONF-2023-004



Measuring Mass (Weight) PHY-101 Lab

Repeat measurements with another balance

Manufactured by CDF



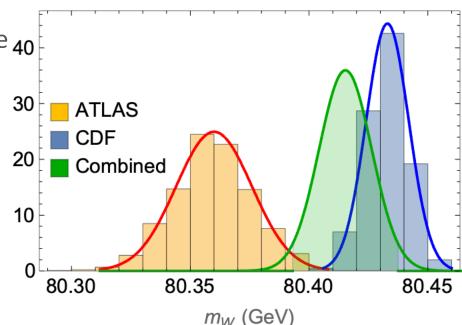
 $m_W^{CDF} = 80.433 \pm 0.009 \, GeV$ $m_W^{ATLAS} = 80.36 \pm 0.016 \, GeV$

Measuring Mass (Weight) PHY-101 Lab

- How should we combine these two discrepant measurements to give one value of mass?
- Attempt #1: Let's repeat earlier exercise 40
 - Minimize loss function

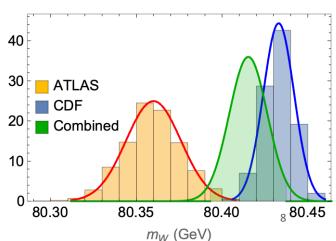
•
$$\chi^2 = \sum_i \frac{(\mu - x_i)^2}{\sigma_i^2}$$

- $m_W = 80.415 \pm 0.011 \, GeV$
- 2σ band does not cover both means
 - · How should we interpret this?
- One familiar proposal
 - Increase tolerance $\Delta \chi^2 = T^2$; T > 1
 - Does not provide a faithful representation of the probability distribution of m_W , drawn from our sample of experiments



Shortcomings of χ^2 fits

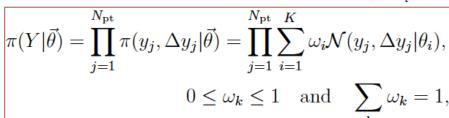
- Why didn't our usual approach reproduce the probability distribution function for m_{W} work?
- In this simple example
 - · We ignored individual likelihoods from each experiment
 - We minimized the χ^2 which is
 - Just like taking the weighted mean
 - And adding errors in quadrature
 - Then defining a new gaussian likelihood (green)
 - Starting assumption is that m_W likelihood is a single gaussian
 - Good assumption if data is consistent
- Attempt #2: Combine likelihoods

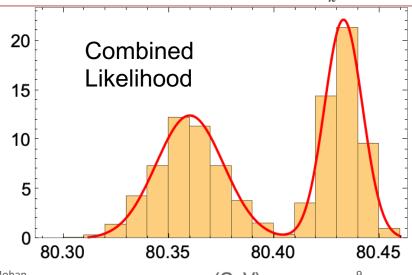


Combining Likelihoods – Gaussian Mixture Model

$$\mathcal{N} = \frac{e^{\left[\frac{(\mu - \chi_i)}{\sigma_i^2}\right]}}{\sqrt{2\pi}\sigma_i}$$

- Start by parameterizing the likelihood as a sum of Gaussians
- In this simple example we know there are two Gaussians, i.e. K= 2
- In general, the value of K needs to be determined discussed later
- Introduced a new parameter ω_k weights
- Constraints on ω_k ; ensures proper normalization and interpretation as a probability distribution function
- For simplicity we'll use equal weights here
- In reality it is an additional fit parameter
- See Interpretation in Bayesian formalism later.





MICHIGAN STATE UNIVERSITY

Determine mean and variance for GMM

between

Gaussians

PDFLattice2024

Mean

$$\mathbb{E}[\theta] = \sum_{i=1}^{K} \omega_i \hat{\theta}_i.$$

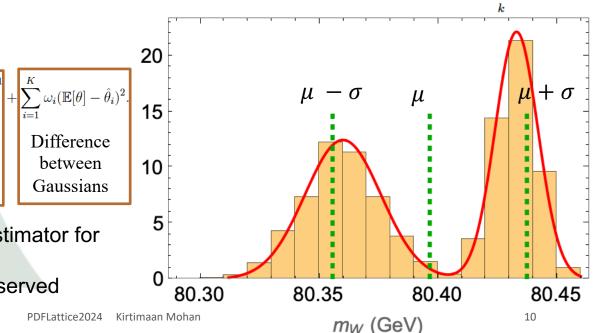
$$\begin{array}{ll} \text{cov}_{\text{GMM}} & = & \displaystyle\sum_{i=1}^{K} \omega_{i} \; \text{cov}_{\text{GMM},i} + \displaystyle\sum_{i=1}^{K} \omega_{i} (\mathbb{E}[\theta] - \hat{\theta}_{i})^{2} \\ \\ & = & \displaystyle\sum_{i=1}^{K} \omega_{i} \bigg(\displaystyle\sum_{j=1}^{N_{\text{pt}}} \frac{1}{\Delta y_{j}^{2}} \bigg(\frac{\partial y_{j}(\theta_{i})}{\partial \theta_{i}} \bigg)^{2} \frac{\mathcal{N}(y_{j}, \Delta y_{j} | \theta_{i})}{\pi(y_{j}, \Delta y_{j} | \vec{\theta})} \bigg)^{-1} + \\ \\ & \text{Weighted sum of covariances} \end{array}$$

of each Gaussian

Here we use the variance as an estimator for the standard error.

Alternatively, we could use the Observed Fisher Information Matrix

 $\pi(Y|\vec{\theta}) = \prod_{j=1}^{N_{\text{pt}}} \pi(y_j, \Delta y_j | \vec{\theta}) = \prod_{j=1}^{N_{\text{pt}}} \sum_{i=1}^{K} \omega_i \mathcal{N}(y_j, \Delta y_j | \theta_i),$ $0 \le \omega_k \le 1$ and $\sum \omega_k = 1$,



MICHIGAN STATE UNIVERSITY

80.45

Determine mean and variance for GMM

Difference

between Gaussians

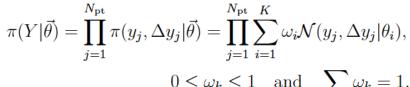
Mean

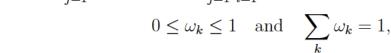
the likelihood.

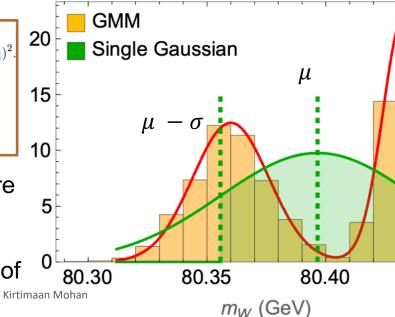
$$\mathbb{E}[\theta] = \sum_{i=1}^K \omega_i \hat{\theta}_i.$$

of each Gaussian

Caveat about green curve: because we are used to it, it is possible to model this as a single Gaussian (green) – but we must be careful - it is **not** a faithful representation of







Formalism

Bayesian Model Averaging

Review of Bayesian Formalism for χ^2

Data
$$D_i = \langle D_i
angle + \sigma_i \Delta_i$$
 . $\langle f
angle = (2\pi)^{N_D/2} \int f(\Delta) \prod_{i=1}^{N_D} d\Delta_i \exp\left(-rac{1}{2}\Delta_i^2
ight)$

$$\langle g \rangle = \frac{1}{\sqrt{(2\pi)^{N_D} \det C}} \int g(D) \prod_{i,j=1}^{N_D} dD_i \exp\left(-\frac{1}{2}(D_i - \langle D_i \rangle)(D_j - \langle D_j \rangle)C_{ij}^{-1}\right)$$

$$P(D|T(a)) = \frac{1}{\sqrt{(2\pi)^{N_D} \det C}} dD \exp\left(-\frac{1}{2} \sum_{i,j=1}^{N_D} (D_i - T_i(a))(D_j - T_j(a))C_{ij}^{-1}\right)$$

$$P(T(a)|D) = \frac{P(D|T(a))P(T(a))}{P(D)}$$

Bayesian Model Averaging and GMMs

Data from K different experiments

$$D_i^{(k)} = \langle D_i^{(k)} \rangle + \sigma_i^{(k)} \Delta_i^{(k)} = T_i(a^{(k)}) + \sigma_i^{(k)} \Delta_i^{(k)}$$

$$P(T(a^{(k)})) = \int d\mu d\tau P(T(a^{(k)})|\mu,\tau) p(\mu,\tau) \equiv w_k \qquad \sum_{k=1}^K w_k = 1.$$

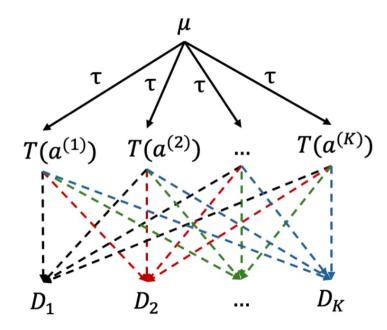
Bayes' Theorem

$$P(D_i|T(a^{(k)}))P(T(a^{(k)})) = w_k P(D_i|T(a^{(k)})) = P(T(a^{(k)})|D_i)P(D_i)$$

$$\prod_{i=1}^{N_D} \left(\sum_{k=1}^K P(T(a^{(k)})|D_i) \right) \propto \prod_{i=1}^{N_D} \left(\sum_{k=1}^K w_k \mathcal{N}(D_i|T(a^{(k)}),\sigma_i) \right) \quad \text{Likelihood of GMM}$$

Bayesian Model Averaging (BMA)

See also talk by Ethan Neil and arxiv:2008.01069



$$\prod_{i=1}^{N_D} \left(\sum_{k=1}^K P(T(a^{(k)})|D_i) \right) \propto \prod_{i=1}^{N_D} \left(\sum_{k=1}^K w_k \mathcal{N}(D_i|T(a^{(k)}), \sigma_i) \right)$$

Application of GMM and BMA to a toy model of PDFs

MICHIGAN STATE UNIVERSITY

A toy model of PDFs with inconsistent data

"truth"
$$g(x) = a_0 x^{a_1} (1-x)^{a_2} e^{xa_3} (1+xe^{a_4})^{a_5}$$

Parameters of model: $\{a_0, a_1, a_2, a_3, a_4, a_5\}$

Pseudo-data generation

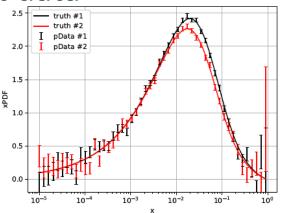
Central value
$$g_D(x) = (1 + r \times \Delta g(x))g(x)$$

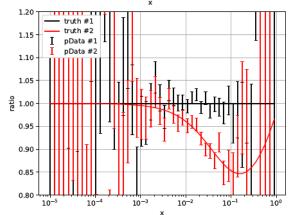
Uncertainty

$$\Delta g(x) = \frac{\alpha}{\sqrt{g(x)}}$$

	$N_{ m pt}$	a_0	a_1	a_2	a_3	a_4	a_5
pseudo-data #1	50	30	0.5	2.4	4.3	2.4	-3.0
pseudo-data $\#2$	50	30	0.5	2.4	4.3	2.6	-2.8

Inconsistent Pseudo-data generated by starting with different values of $a_4 \& a_5$

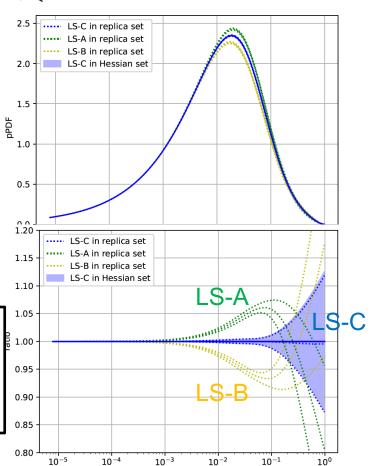




Fits to pseudo-data
$$\chi^2 = \sum_{j=1}^{N_{
m pt}} \left(\frac{D_i - T_i(\theta)}{\Delta D_i} \right)^2$$

fits	pseudo-data	best-fit a_4	best-fit a_5	$\chi^2_{\#1}/N_{\mathrm{pt}}$	$\chi^2_{\#2}/N_{\mathrm{pt}}$		
$\overline{\text{LS-}A}$	# 1	2.32	-3.22	0.88	6.55		
LS-B	# 2	2.63	-2.73	7.00	1.02		
$\operatorname{LS-}C$	# 1 and $#$ 2	2.48	-2.94	2.27	2.56		Ļ
truth	# 1	2.4	-3.0	-	-		-
truth	# 2	2.6	-2.8	-	-		
−2.4 T	I.S. C. in ronli	so set					
	LS-C in repliLS-A in repli				sist.		
-2.6	LS-B in repli						
	x truth #1			7.			
	x truth #2		LS-C		S-B		
-2.8	+ LS-C best-fit LS-C 1-σ			7 3			
	LS-C 1-σ						
€ –3.0 -			3				
				I C A . D		4	1
				LS-A: D	ata set	1 only	k
-3.2				I S-B D	ata set	2 only	1
		S-A				•	ı
-3.4				LS-C: C	ombine	s all	ı
				data			ı
		A Partie		data			ı
-3.6 	9 2.0 2.1	2.2 2.3	2.4 2.5	2,6 2	2.7 2.8		_
			a ₄				

MICHIGAN STATE UNIVERSITY

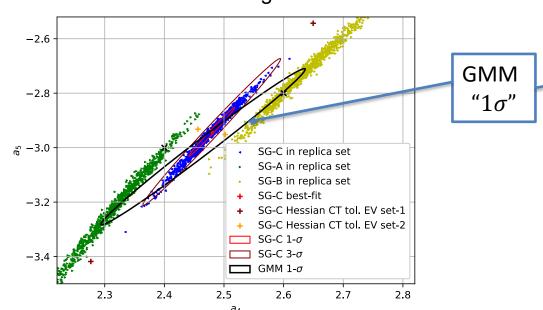


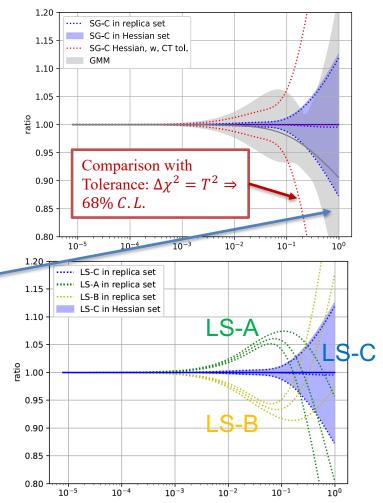
Fits to pseudo-data using the GMM

GMM uncertainty ellipse spans both replica sets. Unlike usual χ^2 method

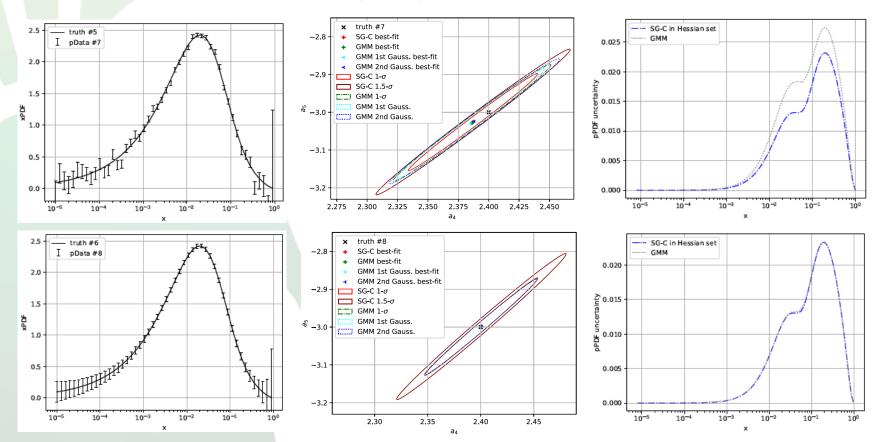
Axis of ellipse is different – covers uncertainties from individual data sets

Tolerance criteria both over and underestimates uncertainties in different regions





GMM reduces to the χ^2 likelihood (K= 1), when data is consistent



 $0 \le \omega_k \le 1$ and $\sum_{i} \omega_k = 1$,

How many Gaussians? How do we determine K?

Akaike Information Criterion (AIC) (Akaike, 1974)

Bayesian Information Criterion (BIC) Schwarz (Ann Stat 1978, 6:461–464)

AIC =
$$N_{\text{parm}} \log N_{\text{pt}} - 2\log L|_{\theta = \hat{\theta}}$$
,
BIC = $2N_{\text{parm}} - 2\log L|_{\theta = \hat{\theta}}$.

$$N_{\text{parm}} = 2K + (K - 1).$$

Use the lowest values of AIC & BIC to determine the best value of K and avoids over-fitting.

	•							
			K = 1	K=2	K = 3	K = 4		
	case-1	AIC	-102.2	-203.6	-194.9	-187.9		
Strong tension		BIC	-106.1	-211.2	-206.4	-203.2		
	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-55.0	-109.6	-109.2	-109.6		
Weak tension	case-2	AIC	-21.2	-15.4	-7.9	-0.2		
due to large		BIC	-25.0	-23.0	-19.3	-15.5		
uncertainty	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-14.5	-15.5	-15.7	-15.7		
	case-3	AIC	-219.3	-220.2	-212.8	-205.0		
		BIC	-223.2	-227.8	-224.3	-220.3		
	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-113.6	-117.9	-117.9	-118.1		
Consistent but	case-4	AIC	-117.8	-109.9	-102.1	-94.3		
data fluctuated		BIC	-121.6	-117.6	-113.6	-109.6		
	$N_{\rm pt} = 50$	$-\mathrm{log}L$	-62.8	-62.8	-62.8	-62.8		
C · · · · · · · · · · · · · · · · · · ·	case-5	AIC	-169.3	-161.5	-153.6	-145.8		
Consistent - No fluctuation		BIC	-173.1	-169.1	-165.1	-161.1		
Huctuation	$N_{\rm pt} = 50$	$-\mathrm{log}L$	-88.6	-88.6	-88.6	-88.6		
$N_{ m pt}$ $N_{ m pt}$ K								
$\pi(Y \vec{\theta}) = \prod_{i} \pi(y_j, \Delta y_j \vec{\theta}) = \prod_{i} \sum_{j} \omega_i \mathcal{N}(y_j, \Delta y_j \theta_i),$								
i=1 $i=1$ $i=1$								
	J -		J -1 0-1	-				

Summary & Outlook

- Showed how to repurpose the GMM, a well-known machine learning classification tool, as a statistical model to estimate uncertainty in PDF fits
 - Can also be used to classify PDF fitting data and find tensions in data sets unsupervised machine learning task
- Provides an implementation of Bayesian Model Averaging, to provide statistically robust estimates of uncertainty.
- Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF uncertainty estimation
 - Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn
- Here I only showed tension due to experimental inconsistencies, but this also applies to tension resulting from imprecise theoretical predictions.
- Can be used to determine a value of Tolerance in order to connect with existing prescriptions.
- Next steps: Apply to real data and pdf fit.