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“The EIC will be a particle accelerator that collides electrons with protons and nuclei to 
produce snapshots of those particles’ internal structure—like a CT scanner for atoms. The 
electron beam will reveal the arrangement of the quarks and gluons that make up the 
protons and neutrons of nuclei.”
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https://www.bnl.gov/eic/



The importance of 
imaging

• One instance that we are well aware 
of: The Event Horizon Telescope (EHT) 
imaged and object 55 M light-years 
away= 5 x 1023 m

• But what is the science that goes into 
imaging the proton, observing its spatial 
structure at 10-15 m?   
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Horton does not use Uncertainty Quantification



The EXCLAIM collaboration

PIs: Marie Boer, Gia-Wei Chern , Michael 
Engelhardt, Gary Goldstein, Yaohang Li, Huey-Wen 
Lin, SL, Matt Sievert, Dennis Sivers
Current Postdocs: Douglas Adams, Marija Cuic,Liam
Hockely,  Saraswati Pandey, Emanuel Ortiz, Kemal 
Tegzin

Current Students: Andrew Dotson, Carter Gustin, 
Jang (Jason) Ho,  Fayaz Hossen, Adil Khawaja, Zaki
Panjsheeri, Anusha Singireddy
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Thanks to the EXCLAIM collaborators, Douglas Adams  
and Yaohang Li
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https://atlas.cern/

Standard Approaches: Industrial Machine Learning  (ML) tools are 
used/adapted  to aid computation in Nuclear/Particle Physics

Example: Ensemble learning methods such as Boosted Decision Trees (BDT) 
invented for image recognition/object detection used in self-driving cars 
are used to identify b-hadrons



• We introduce  physics aware NNs as explainable 
ML models: C-VAIM

• Symbolic Regression: ML algorithm where data are 
modeled directly with analytic expressions. Direct 
interpretability

• Explainable and interpretable models are 
necessary for the 3D nuclear problem directly 
enabling discovery laws in Nuclear and Particle 
Physics

• Not just a set of advanced computational tools: It 
is about finding a common language  between 
physics and AI 
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Physics → 

Standard ML→ 

To address the “why”?



Forward Problem

Data/MeasurementsQCD
• quark field
• gluon field
• correlation functions
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Inverse Problem

Observables
• Form Factors
• Structure Functions
• Compton Form Factors
• Fragmentation functions
• …



• Interpretability
The goal in physics is to extract information as 
accurately as possible from data

• Predictivity 
The goal of ML is to obtain statistical models 
that can make predictions from the data 

• Inverse problem
To address this we need to define a bridge 
between CS experts and physicists that is
centered on how we define and treat the 
respective data uncertainty and correlations  
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An immense potential! 
Through ML we will be able to see the 

emergence of new physics 
relations/laws
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Twist three GPD Physical interpretation at the core of spin puzzle

A. Rajan, M. Engelhardt and S. Liuti, Phys. Rev. D98, 074022 (2018)
A. Rajan, A. Courtoy, M. Engelhardt and S. Liuti, Phys. Rev. D94, 034041 (2016)
M. Rodekamp, M. Engelhardt, J.R. Green, S. Krieg, S. Liuti, S. Meinel, J.W. Negele, A. Pochinsky and S. 
Syritsyn, Phys. Rev. D 109, 074508 (2024) 



Transverse Angular Momentum Sum Rule
O. Alkassasbeh, M. Engelhardt, SL and A. Rajan, https://arxiv.org/abs/2410.21604
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1st Inverse Problem: extracting Compton form factors from cross section
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Twist 3 GPDs Physical Interpretation

Transverse OAM LT

1/Q correction to #H
1/Q correction to H

Transverse spin 

(*) T-odd

NEW!!    Spin Orbit correlation L %S
NEW!!     Orbital Angular Momentum L

[1] Meissner, Metz and Schlegel, JHEP(2009)

1

NEW!! 
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How do we separate twist 
two and twist three 
components?

JT

JL

A. Rajan, A. Courtoy, M. Engelhardt, S.L., PRD (2016)
A. Rajan, M. Engelhardt, S.L., PRD (2018)
A. Rajan, O. Alkassasbeh, M. Engelhardt, S.L.,  (2023)

• B. Kriesten and S. Liuti, Phys.Rev. D105 (2022), arXiv
2004.08890
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Extract Compton form factors from Leading order parametrization of DVCS cross section

• B. Kriesten et al, Phys.Rev. D 101 (2020)
• B. Kriesten and S. Liuti, Phys.Rev. D105 (2022), arXiv 2004.08890
• B. Kriesten and S. Liuti, Phys. Lett. B829 (2022), arXiv:2011.04484

spin non-flip

spin flip

mixed

Azimuthal angle f 
dependent coefficients

https://arxiv.org/abs/2004.08890
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z

koutkin

At leading order in pQCD



3D Coordinate Space Representation
Observables from DVES matrix elements can be Fourier transformed from momentum space into coordinate space, 
providing insight into the spatial distributions of  quarks and gluons inside the proton, besides matter and charge 
distributions.

UVA gluon GPD parametrization 
(from lattice QCD and 
experiment) 
B. Kriesten. P. Velie, E. Yeats, F. Y. 
Lopez, & S. Liuti, 
Phys.Rev.D 105 (2022) 5, 056022

GPD

Wigner phase space distribution

Z. Panjsheeri GGL



Statistics

Cross 
section 
information

Compton 
form 
factors 
extraction

September 2023/May 2024

1st inverse problem

- Does Factorization work?
- GPDs/QCD matrix elements 
- Angular momentum
- Spatial structure

More theoretical questions 

2nd inverse problem
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1. Fully constraining Likelihood analysis

2. Inverse Problem techniques: Variational Autoencoder Inverse Mapper (VAIM)

3. Symbolic  Regression for Partonic Observables

All these methods share the common goal of going beyond simple regression by understanding the 
underlying correlations of the system  



1. Fully 
Constraining CFFs : 
Likelihood Analysis

GOAL: Use DVCS data and comparing to cross section 
model to find CFFs

• We find a CFF result using VAIM: Got some valid CFFs
• Curve fit: A really bad result: Encounter a problem 1! 
• Definition of the likelihood: Try to fix the problem
• Canonical Likelihood: Reproduces the problem in 

explainable way
• Canonical Likelihood Modified: Fix the problem in 2 

ways
• Difference method Likelihood
• Canonical Likelihood

• Encounter a problem 2!: Poll the audience
• Some results: Table of CFFs and errors
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Graduate Students:
Joshua Bautista, Adil Khawaja, Zaki Panjsheeri



Try a curve fit for a kinematic setup forcing one CFF
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Likelihood function: Bayes law
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For frequentists:  Prior = 1

(Canonical)



Canonical Likelihood Derivation
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Each data point’s error bar: 
● defines a gaussian
● should explain why the data does not match the model exactly
● (canonically) multiplies to derive a total likelihood function

The total likelihood function and a choice of prior:
● uniquely defines a posterior probability density function
● can be used to generate samples (MCMC)



Reminder: What is MCMC?

Start with a probability 
distribution

25

Generate samples which 
represent that distribution

x

p(x)

Good MCMC algorithms generate samples 
which would reproduce the distribution as a 

histogram

MCMC



Naive MCMC 1

Fitting σTOT(𝜙A) directly with all 8 CFFs 
Provides a highly degenerate result 
(nonsense bounds)

These streaks of MCMC 
samples indicate lack of 

convergence

26
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(1) A likelihood analysis of the DVCS cross section model vs. deeply virtyual

Only three CFFs are non 
degenerate!

CFFs cannot be extracted 
from unp DVCS 
x-sec

Outliers analysis (not 
shown) improves results



Difference 
Likelihood Result

• Here the maximum likelihood is achieved 
allowing 3CFFs to vary. 
Only 23 combinations of 2 angles are used. 

28
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CFF Likelihood Result Summary https://arxiv.org/abs/2410.23469

● Using the UVA DVCS twist 2 unpolarized cross section model (σTOT, UVA, UU) assuming:
○ Cross section model is True
○ Cross section model has 8 CFFs only
○ Each CFF is independent of phi, but dependent on other kinematics

● Using Hall-A DVCS Data from Georges thesis
○ doi:10.1038/s41567-019-0774-3
○ each kinematic bin has 24 rows of (𝜙, σTOT) data

● Naively one would assume we can use the model to produce 24 equations and 8 unknowns 
to fully constrain the unknowns (as an overdetermined system). 
○ However 5 CFFs are degenerate because σDVCS has no phi dependence. 
○ Thus only the other 3 CFFs can be fully constrained using σINT

● We produced a table of CFF results for 45 kinematic bins 
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https://arxiv.org/abs/2410.23469


2. Inverse Problem Techniques: VAIM, C-VAIM, MCMC

Approaches to find parameters statistically in an underdetermined system:

● Can quantify parameter uncertainty when more parameters than data 

● Techniques highly dependent on bounded parameter priors 

● These methods give us an initial way to perceive: 
○ the correlation between parameters on a complicated model
○ what information is missing (latent space) 

31
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t=0.34 Ht Et

H
E

• KMNN, https://arxiv.org/abs/2007.00029

(2023)

2405.05826arXiv:
• A variational autoencoder inverse mapper solution to Compton form factor extraction 

from deeply virtual exclusive reactions
(2)

https://arxiv.org/abs/2007.00029
https://arxiv.org/abs/2405.05826


VAIM Result Using Prior for CFFs (2)

● Apply cross section 
equation as 
constraint with 
observed data

● Include a prior

● Generate random 
but viable CFFs 
which try to satisfy 
the constraint

https://arxiv.org/pdf/2405.05826
33

https://arxiv.org/pdf/2405.05826

https://arxiv.org/pdf/2405.05826
https://arxiv.org/pdf/2405.05826
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sign!! periodicity/oscillation

CFFs Analysis of Latent Space
EtH E Ht



VAIM Results Motivate a likelihood analysis

● Requires a prior for the CFFs
● Assume the same CFFs work for many different kinematic bins
● Approximated the error bars on the data

35

It would be nice to reduce assumptions required

https://arxiv.org/pdf/2405.05826

https://arxiv.org/pdf/2405.05826
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Comparison of MCMC sampling/inverse mapper and VAIM



3. Symbolic Regression for Parton Research

1) What is symbolic regression and why do we care?
a) Spoiler: because then humans can read the answer 

2) What are the existing tools out there?
a) Eureka
b) Gplearn
c) AI Feynman
d) PySr
e) RL-SR
f) *Meijer-G-Function (very preliminary)

37

Graduate Students:
Andrew Dotson (NMSU) 
Anusha SingiReddy (ODU)
Zaki Panjsheeri (UVA)



What is symbolic regression (SR)?

Done

Attempt an 
Expression

GoodnessData Table

Fitness Metric

e.g. squared error

Form Metric

e.g. #terms

Good? Yes

Symbolic Modification

e.g. 
mutation

No
38



Why bother with SR when we have neural networks?

Which is easier to read? ( a.k.a  interpretability of AI )

Black Box 
Regression

vs

39



Using a pareto front to choose amongst forms

One must 
define a 
“metric” which 
balances fit vs. 
form to choose 
a best
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Generalized Parton Distributions from Symbolic Regression

We have a lattice simulation of a GPD as a function of x, t, Q2

The goal is to find a closed form expression for that GPD

41
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Example of a factorized in x and t form

Testing x and t factorization (important for spatial configurations!)

(MSE constant power) 

phenomenology
lattice

J. Holligan and H-W Lin, Phys.Rev. D110, 034503 (2023)
H-W Lin, Phys. Lett. B824, 136821 (2022)



Extrapolation

Novel SR Convergence Clustering 
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Lattice 
Region



Whether the x and t dependences factorize has consequences on the 3D 
Coordinate Space picture

GPDs can be Fourier transformed from momentum space into 
coordinate space, providing insight into the spatial distributions of  
quarks and gluons inside the proton, besides matter and charge 
distributions.

With Z. Panjsheeri and J. Bautista GPD

Slice of Wigner phase space distribution

d-quark

gluon



Compare to lattice and 
AdS/CFT integrated value
K. Mamo and I. Zaeed

PRD106, 086004 (2022)

LQCD: Detmold and Shanahan

LQCD gluon

Quark radius

Bautista, Panjsheeri, SL (2024)

𝑏#$

Gluon and quark 
matter density 
radius

UVA param

arXiv:2405.05842

https://arxiv.org/abs/2405.05842


From SR Analysis
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Papers Recent & In Preparation:
Variational autoencoder inverse mapper for extraction of Compton form factors: Benchmarks and conditional 
learning
https://arxiv.org/abs/2408.11681

VAIM-CFF: A variational autoencoder inverse mapper solution to Compton form factor extraction from deeply 
virtual exclusive reactions
https://arxiv.org/abs/2405.05826

Likelihood and Correlation Analysis of Compton Form Factors for Deeply Virtual Exclusive Scattering on the Nucleon
https://arxiv.org/abs/2410.23469

Generalized Parton Distributions from Symbolic Regression
(in preparation)
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https://arxiv.org/abs/2408.11681
https://arxiv.org/abs/2405.05826
https://arxiv.org/abs/2410.23469
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1. A successful reconstruction of the spatial structure of the proton (and all of its mechanical properties)  relies on 
our ability to understand the cross section for all the various DVES processes

2. This implies solving multiple inverse problems

3. We have defined a path to extract the observables from experiment that allows us to fully take into account UQ 
from data and ab initio QCD calculations

4. Bringing interpretability and benchmarking to AI tools is a necessity for us to progress faster towards 
understanding the 3D picture of the proton

5. Obtaining spatial images of the proton including UQ is feasible using AI/ML to extend the momentum transfer 
reach for an accurate Fourier transformation

Conclusions
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Back up
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PySR convergence

Andrew Dotson


